
Question 1.

Let X contain all real numbers from [0; 1] which can be represented using 256 bits. Let H = X, and let the decision be given
by H ∈ H as

h(x) = 1 iff x > H

Determine an m such that with probability at least 0.9, err(h) < 0.1, where h is an arbitrary hypothesis from H consistent
with m i.i.d. examples from X. Estimate it

(a) without using any upper bounds seen in the lecture

(b) using the upper bound with ln |H|

(c) using the upper bound with VC(H)

Answer:

We have

ε = 0.1

δ = 1− 0.9 = 0.1

|H| = 2256

(a) For a fixed h, the probability that it is “bad” (err(h) > ε) and still consistent with m i.i.d. observations is at most
(1− ε)m = 0.9m.

For an arbitrary h ∈ H, we can bound the probability of at least one of them being “bad” by∑
h∈H

(1− ε)m = |H|(1− ε)m = 22560.9m

We want this probability to be smaller than δ:

|H|(1− ε)m < δ

m ≥ log1−ε
δ

|H|

i.e.,

m > log0.9

0.1

2256
≈ 1707 examples (smallest such m) (1)

(b)

m >
1

ε
ln
|H|
δ

m >
1

0.1
ln

2256

0.1
≈ 1798 examples (smallest such m)

which is slightly greater than before because the upper bound (1− ε)m < e−εm(ε > 0) is used in the derivation of the
formula.

(c) VC(H) = 1 because a single number from X can evidently be shattered (classified positively or negatively by hypotheses
from H) but two different numbers from X cannot be shattered: the smaller cannot be made positive while the larger
is negative.

m >
8

ε

(
VC(H) · ln 16

ε
+ ln

2

δ

)
≈ 646 examples

Question 2.

Consider the following decision tree:

1

x1

x3

1 x2

1 0

x2

x4

1 0

0

0 1

0 1

0 1

0 1

0 1

(a) Express the tree as a 3-DNF.

(b) Express the tree as a 3-CNF.

(c) How can we use (modify) the generalization algorithm to learn k-decision trees in the PAC learning model?

Answer:

(a) A 3-DNF is a disjunction of minterms conjoining at most 3 literals.

We construct each minterm by following one path to a positive label. By disjoining all those paths, we get the final
DNF tree representation.

(¬x1 ∧ ¬x3) ∨ (¬x1 ∧ x3 ∧ ¬x2) ∨ (x1 ∧ ¬x2 ∧ ¬x4)

(b) A 3-CNF is a conjunction of maxterms (clauses) disjoining at most 3 literals.

We can use the fact that a negation of a DNF is a CNF. We can’t negate the DNF constructed above directly, since
then, we would consider paths going into the negative labels. However, we can construct a DNF going into the negative
labels and negate that, giving us a CNF capturing the paths going into the positive labels.

¬ ((¬x1 ∧ x3 ∧ x2) ∨ (x1 ∧ ¬x2 ∧ x4) ∨ (x1 ∧ x2))

We could also construct the CNF directly. Consider each path to a negative label and “do everything in your power to
avoid going down that path”. For example, considering the “path” 〈¬x1, x3, x2〉, construct the clause (x1 ∨¬x3 ∨¬x2).

Regardless of the strategy used, the final 3-CNF reads as

(x1 ∨ ¬x3 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2)

(c) We can use the fact following from the exercises above that k-DT ⊆ k-CNF (k-DNF). Hence, we will use the generaliza-
tion algorithm for learning k−CNFs (k−DNFs). Each clause (minterm) will be encoded by a new propositional variable

and then we will simply be learning a conjunction (disjuction). There will be
∑k
i=1

(
n
i

)
2i ≤ poly(n) propositions, hence

we will also learn efficiently. We won’t be learning properly, though.

Using the adapted algorithm, we will be learning k-DTs in the mistake bound learning model, which implies that we
will also be learning them in the PAC model.

2

