An algorithm to learn linearly separable concepts on $\{0,1\}^n$.

Monotone (no negation) conjunctions and monotone disjunctions are linearly separable. Non-monotone convertible to monotone by doubling the number of variables.

WINNOW hypothesis space is R^n , $h = [h_1, h_2, \dots, h_n]$. h_i are "weights".

```
Initially h = [1, 1, ... 1].
```

Decision rule: decide "yes" if $\sum_{i=1}^{n} h_i \cdot x_i > n/2$, else "no".

Similar to the well-known perceptron algo. Main difference is the learning rule.

The WINNOW Algorithm: Learning rule

Unlike the perceptron, WINNOW adapts weights *multiplicatively*.

When an example x is misclassified, h changes to h':

• If x is positive (i.e., "false negative"), *double* all h_i where $x_i = 1$:

$$h_i'=2h_i$$

• If x is negative (i.e., "false positive"), *nullify* all h_i where $x_i = 1$:

 $h_i'=0$

Other weights $(\forall i, x_i = 0)$ remain same.

Let us develop a mistake bound for WINNOW learning *monotone* k-*disjunctions*, i.e., monotone disjunctions of up to $k \in N$ variables.

No weight in h ever becomes negative.

• Only doublings and nullifications from the initial h = [1, 1, ..., 1]

No weight in h ever exceeds n.

- Assume for contradiction that some $h_j \le n$ gets doubled to $h'_j > n$ (i.e., $h_j > n/2$) after an example x.
- $x_j = 1$ as otherwise h_j would not get doubled.
- Doubling occurs only after a false negative so ∑_{i=1}ⁿ h_i ⋅ x_i ≤ n/2. But that contradicts h_i > n/2 considering none of h_i is negative.

The total increase in weights after a *false negative* x is at most n/2:

$$\sum_{i=1}^{n} h'_{i} - \sum_{i=1}^{n} h_{i} = \sum_{i=1}^{n} (h'_{i} - h_{i}) x_{i} = \sum_{i=1}^{n} (2h_{i} - h_{i}) x_{i} = \sum_{i=1}^{n} h_{i} x_{i} \le \frac{n}{2}$$

• first equality due to
$$h'_i = h_i$$
 when $x_i = 0$

- second equality due to the doubling rule
- last inequality due to the decision rule and the fact that x was classified negative

The total decrease in weights after a *false positive* x is larger than n/2 (shown analogically).

The WINNOW Algorithm: Analysis

For the initial hypothesis, $\sum_{i=1}^{n} h_i = \sum_{i=1}^{n} 1 = n$.

After N false negatives and P false positives (using the results from the previous page):

$$0 \leq \sum_{i=1}^{n} h_i \leq n + \mathcal{N} \frac{n}{2} - \mathcal{P} \frac{n}{2}$$
$$\mathcal{P} \frac{n}{2} \leq n + \mathcal{N} \frac{n}{2}$$
$$\mathcal{P} \leq 2 + \mathcal{N}$$

thus

i.e. (n > 0),

On each false negative, at least one of the k weights corresponding to the k variables in the concept disjunction gets doubled. (At least one of these variables must have been true for the disjunction to be true.)

So after \mathcal{N} false negatives, one of them (h_j) was doubled at least \mathcal{N}/k times so

$$h_j \geq 2^{\frac{N}{k}}$$

i.e.,

$$\lg h_j \geq \frac{\mathcal{N}}{k}$$

We have shown that no h_i exceeds n. So $\lg h_j \leq \lg n$ and

$$\lg n \geq \frac{\mathcal{N}}{k}$$

So we have a bound for the false negatives

 $\mathcal{N} \leq k \lg n$

and since we have shown that $\mathcal{P} \leq 2 + \mathcal{N}$, we have a total *mistake bound*

 $\mathcal{P} + \mathcal{N} \leq 2 + 2k \lg n$

The lg *n* factor makes WINNOW much faster than the generalization algorithm or the perceptron when *k* is a small ($k \ll n$) constant.

 $k \ll n$ means a "sparse" target concept disjunction—many irrelevant attributes.

Maintains a *finite set of hypotheses* \mathcal{H} ("version space") and on each example x, deletes from it all hypotheses that misclassify it.

$$\mathcal{H}' = \{ h \in \mathcal{H} : h(x) = c(x) \}$$

Decides by *majority vote* among the current \mathcal{H} , i.e., "yes" iff

$$|\{ h \in \mathcal{H} : h(x) = 1 \}| > |\{ h \in \mathcal{H} : h(x) = 0 \}|$$

On each mistake, at least half of the hypotheses were wrong so at least *half* of them get deleted. This gives the *mistake bound*

$$\lg |\mathcal{H}|$$

where \mathcal{H} is the initial version space, i.e., the learner's hypothesis class.

Any finite class C of computable concepts is learnable if $\lg |C| \leq \operatorname{poly}(n)$.

Proof: Use the halving algorithm with any $\mathcal{H} \supseteq \mathcal{C}$ such that $\lg |\mathcal{H}| \le \operatorname{poly}(n)$.¹

That does not mean C is learnable *efficiently*!

If $\left|\mathcal{C}\right|$ is exponentially large, then the halving algo is necessarily non-efficient.

Computational Learning Theory

¹We overload the symbol \mathcal{H} to mean both a class of hypotheses (e.g. conjunctions) and the concept class they define (subsets of *X*).

- Conjunctions or disjunctions: |C| = 2²ⁿ resp. 3ⁿ if contradictions/tautologies excluded.
 - Both halving and generalization algos have linear mistake bound, but the latter is efficient
- k-disjunctions: $|\mathcal{C}| = \sum_{i=1}^{k} \binom{2n}{i}$ resp. $\sum_{i=1}^{k} \binom{n}{i} 2^{i} \leq \text{poly}(n)$
 - Both halving and WINNOW: logarithmic mistake bound, efficient
 - k-conjunctions: same, except WINNOW won't apply
- k-DNF, k-CNF: $|\mathcal{C}| = 2^{|k-\text{disjunctions}|} \le 2^{\text{poly}(n)}$
 - Halving: poly mistake bound, non-efficient
 - Reduction to monotone conjuctions (disjuctions): poly m.b., efficient

We say that concept class C shatters a set of instances $X' \subseteq X$ if for every subset $X'' \subseteq X'$ there is a concept $C \in C$ such that $C \cap X' = X''$.

In other words, X' is shattered by C if it can be split by concepts from C in all $2^{|X'|}$ possible ways.

The *VC-dimension* of C denoted VC(C) is the size of the largest subset of X shattered by C:

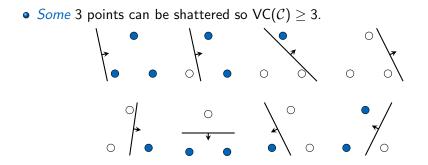
 $\mathsf{VC}(\mathcal{C}) = \max\{ |X'| : \mathcal{C} \text{ shatters } X', X' \subseteq X \}$

 $VC(\mathcal{H})$ for a *hypothesis* class \mathcal{H} defined analogically.

Determining VC-Dimension: Example

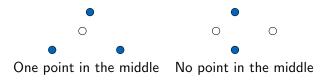
- If some $X' \subseteq X$ shattered by \mathcal{C} then $VC(\mathcal{C}) \ge |X'|$.
- If none $X' \subseteq X$ shattered by \mathcal{C} then $VC(\mathcal{C}) < |X'|$.

Example: C = half-planes in R^2 (i.e., linear separation)



Determining VC-Dimension: Example

• *No* 4 points can be shattered. Obvious if 3 in line. Otherwise two cases possible:



In both cases, the colored subset cannot be separated by a line. So $\mathsf{VC}(\mathcal{C}) < 4$

We have $VC(\mathcal{C}) \ge 3$ and $VC(\mathcal{C}) < 4$, thus $VC(\mathcal{C}) = 3$.

Generally, VC(half-planes in R^n) = n + 1

Concept class C on X is learnable *only if* $VC(C) \leq poly(n)$.

Proof: There exists a set of VC(C) instances from X shattered by C so there exists a sequence $x_1, x_2, \ldots x_{VC(C)}$ of instances such that for any sequence of the learner's decisions there is a concept $c \in C$ making all these decisions wrong.

So $\lg |\mathcal{C}| \le \operatorname{poly}(n)$ implies $VC(\mathcal{C}) \le \operatorname{poly}(n)$ but not the other way around.

VC(C) may be finite (even poly(n)) even if $|C| = \infty$!

PAC = Probably Approximately Correct

Main differences from the mistake bound model:

- A "batch" style of learning rather than "online":
 - A *training* set of examples is provided to the learner.
 - The learner outputs a hypothesis.
- Assumes an arbitrary probability distribution on X from which examples are drawn mutually independently ("i.i.d. assumption").
- No bound on the total number of mistakes, instead the output hypothesis should have a bounded *error* rate (mistake probability).
- Probability of failure (good hypothesis not found) also bounded.
- Size of the training set only polynomial in *n* and the inverse of the two bounds.