
Computational Learning Theory

COLT tries to explain why and when machine learning works.

It studies two aspects of machine learning to provide insights for the
design of learning algorithms.

Statistical: how much data is needed to learn good models?

Algorithmic: how computationally hard is it to learn such models?

COLT usually assumes a simple learning scenario called concept learning,
which is (roughly) noise-free binary classification learning.

More complex scenarios often have concept learning at their heart.

Computational Learning Theory Intro 1 / 16

Concept Learning Elements

Instance space: a set X . Elements x ∈ X are instances.

Concept: a subset C ⊆ X .

The algorithm should learn to decide whether x ∈ C for any given x ∈ X .

Example: X = animals described as tuples of binary variables

aquatic airborne backbone

x = 0 1 0

C = all mammals.

Learning examples: the learner must get some instances x ∈ X with
the information whether x ∈ C or not.

Computational Learning Theory Intro 2 / 16

Concept Class

To decide x ∈ C for any given x ∈ X , the learner must be able to compute
C , i.e., the function

c(x) =

{
1 if x ∈ C

0 if x /∈ C

Countable number of computable concepts (any algorithm has a finite
description so their number is countable)

But uncountable number of concepts if X infinite, e.g. X = N

→ Non-computable concepts exist.

COLT studies the behavior of learners with respect to selected subsets
C ⊂ 2X called concept classes.

Computational Learning Theory Intro 3 / 16

Hypothesis Class

A finite description of a learner’s decision model is called a hypothesis.
Learners use constrained languages (rules, polynomials, graphs, ...) to
encode their hypotheses.

For example, the hypothesis

man ∧married

which is a logical conjunction defines the ‘bachelor’ concept.

Hypothesis languages are typically not Turing-complete so not all
computable concepts can be expressed by hypotheses.

The set of all hypotheses a learner can express is called its hypothesis class.

Computational Learning Theory Intro 4 / 16

A Continuous-Domain Example

Instance space X = R2

Possible concept class C: disks (x1 − a)2 + (x2 − b)2 < r

x1

x2

concept C ∈ C
positive example

negative example

Computational Learning Theory Intro 5 / 16

A Continuous-Domain Example (cont’d)

Possible hypothesis class H: half-planes x2 − ax1 > b

Hypothesis description: (a, b) (with finite precision number repr.)

x1

x4

hypothesis h ∈ H
positive example

negative example

Computational Learning Theory Intro 6 / 16

A Continuous-Domain Example (cont’d)

Possible hypothesis class H: neural networks

Hypothesis description: graph + weights

x1

x4

hypothesis h ∈ H
positive example

negative example

Computational Learning Theory Intro 7 / 16

Continuous vs. Discrete

Instances and hypotheses in continuous domains are largely the topic of a
parallel course (Statistical Machine Learning).

Here we focus mainly on discrete domains that allow convenient symbolic
representations. Typically:

Instance attributes are Boolean values;

Hypotheses are logical formulas.

Symbolic representations have the advantage of understandability to a
human. Important e.g. in medical applications.

Currently studied in the field of “Explainable AI”.

Computational Learning Theory Intro 8 / 16

Learning Models

A learning model is an abstract description of real-life machine-learning
scenarios. It defines

The learner-environment interaction protocol

How learning examples are conveyed to the learner

What properties the examples must posses

What it means to learn successfully

We will discuss two learning models:

Mistake Bound Learning

Probably Approximately Correct Learning.

Sometimes, hypotheses are also called models but here we mean a model of learning.

Computational Learning Theory Intro 9 / 16

Mistake Bound Model

A very simple model assuming an online interaction: a concept C is chosen
from a fixed concept class and the following is then repeated indefinitely:

1 The learner receives an example x ∈ X

2 It predicts whether x is positive (x ∈ C) or negative (x /∈ C)

3 It is told the correct answer (so it can adapt after a wrong prediction)

To define the model, we assume there is a measure n of instance
complexity. When X consists of fixed-arity tuples, we set n = their arity.

Denote poly(n) to mean “at most polynomial in n”.

In math expressions, f (n) ≤ poly(n) means that f (n) grows at most polynomially.

Computational Learning Theory Mistake Bound Model 10 / 16

Mistake Bound Model

We say that an algorithm learns concept class C if for any C ∈ C, the
number of mistakes it makes is poly(n); if such an algorithm exists, C is
called learnable in the mistake bound model.
We will omit “in the mistake bound model” in this section.

Note that the learner

cannot assume anything about the choice of examples (no i.i.d. or
order assumption etc.);

which learns C stops making mistakes after a finite number of
decisions.

If an algorithm learns C and the maximum time it uses to process a single
example is also poly(n), we say it learns C efficiently and we call C
efficiently learnable.

Computational Learning Theory Mistake Bound Model 11 / 16

Learning Conjunctions

Assume X = { 0, 1 }n (n ∈ N) and C consists of all concepts expressible
via conjunctions on n variables. Consider the following generalization
algorithm.

1 Initial hypothesis h = h1h1h2h2 . . . hnhn

2 Receive example x , decide “yes” iff h true for x (x |= h)

3 If decision was “no” and was wrong, remove all h’s literals false for x

4 If decision was “yes” and was wrong, output “Concept cannot be
described by a conjunction.”

5 Go to 2

To adapt this algo for C = monotone conjunctions (conj. with no
negations), use h = h1h2 . . . hn in Step 1.

Computational Learning Theory Mistake Bound Model 12 / 16

Learning Conjunctions

Let C ∈ C be the concept used to generate the examples and c the
conjunction that encodes it. Observe and explain why:

Initial h tautologically false, n literals get deleted from it on first
mistake on a positive (in-concept) example, resulting in |h| = n.

If a literal is in c , it is never deleted from h, so c ⊆ h (literal-wise).

At least one literal is deleted on each mistake.

So the max number of mistakes is n + 1 ≤ poly(n).

Thus the algorithm learns conjunctions (in the MB model) and does so
efficiently (time per example is linear in n).

So conjunctions are efficiently learnable.

Computational Learning Theory Mistake Bound Model 13 / 16

Learning Disjunctions

Efficient learnability of conjunctions implies the same for disjunctions.

If disjunction c defines concept C then c is a conjunction defining the
complementary concept X \ C .

Use any efficient conjunction learner to learn X \ C , so the correct answers
provided to the learner are according to c .

Then negate the hypothesis returned by the algorithm, obtaining a
disjunction for C .

Computational Learning Theory Mistake Bound Model 14 / 16

Learning k-CNF and k-DNF

k-CNF (DNF) is the class of CNF (DNF) formulas whose clauses (terms)
have at most k literals. For example, 3-CNF includes

(a ∨ b)(b ∨ c ∨ d)

k-CNF is efficiently learnable.

With n variables, there are n′ =
∑k

i=1

(n
i

)
2i ≤ poly(n) different clauses.

Introduce a new variable for each of the n′ clauses and use an efficient
learner to learn a monotone conjunction on these variables. Then plug the
original clauses for the variables in the resulting conjunction, obtaining a
k-CNF formula. This is efficient due to n′ ≤ poly(n).

Analogically, also k-DNF is efficiently learnable.

Computational Learning Theory Mistake Bound Model 15 / 16

Learning k-term DNF and k-clause CNF

k-term DNF (k-clause CNF): at most k terms (clauses).

No algorithm known for efficient learning of k-term DNF using k-term
DNF as the hypothesis class. Same for k-clause CNF.

But k-term DNF ⊆ k-CNF since any k-term DNF can be written as an
equivalent k-CNF by “multiplying-out.” E.g.,

(abc) ∨ (de) |=| (a ∨ d)(a ∨ e)(b ∨ d)(b ∨ e)(c ∨ d)(c ∨ e)

So k-term DNF is efficiently learnable by an algorithm using k-CNF as its
hypothesis class. This is called improper learning.

Analogically: k-clause CNF learnable using k-DNF.

Computational Learning Theory Mistake Bound Model 16 / 16

	Computational Learning Theory
	Intro
	Mistake Bound Model

