
Combinatorial Algorithms

CoContest Semester Project Assignment:

Kidney exchange problem

Industrial Informatics Research Center
https://industrialinformatics.fel.cvut.cz/

March 1, 2023

Abstract

This document introduces the assignment for the CoContest semester project.

1 Motivational Example

For a long time, our colleague Theodor suffered from a chronic kidney disease, which resulted
in the failure of his kidneys to function correctly. Since then, he had to visit the hospital every
second day, where he was connected to a dialysis machine for many hours. Long hours on dialysis
interfered with his life, and he became increasingly unhappy.

After seeing him sad, his wife, Sofia, decided to donate him one of her healthy kidneys. Unfor-
tunately, after performing some medical tests at a hospital, the doctors found out that Theodor
and Sofia were not biologically compatible, meaning that Theodor’s immune system would at-
tack the donated kidney from Sofia. After some time, the kidney would not work anymore, and
Theodor would have to be on dialysis again.

However, the doctors at the hospital offered Theodor and Sofia an alternative: to join an
international kidney exchange program. There are many similar pairs in the program as Theodor
and Sofia, who are not biologically compatible but might be compatible across pairs. So, Theodor
would get a kidney from a compatible donor from a different country, and Sofia would donate her
kidney to another compatible recipient.

2 Formal Problem Statement

Let P = {pi | i ∈ {1, . . . , n}} be a set of n donor-recipient pairs. Let G = (P,E) be a directed
graph, where edge (pi, pj) ∈ E, i ̸= j denotes that donor of pair pi is compatible with the recipient
of pair pj (note that compatibility between pairs is not necessarily symmetrical). Let ω(e) ∈ [0, 1]
be the preference weight for edge e = (pi, pj) ∈ E, denoting how much it is preferable that the
recipient of pj pair receive a kidney from the donor of pi pair. Let C(G) be a set of all directed
cycles in graph G. Let ck, cl ∈ C(G) be two different directed cycles in graph G; we say they are
disjoint if they do not share any edge or vertex. The goal of the kidney exchange problem is to
find a set of mutually disjoint cycles C ′ ⊆ C(G) which maximizes the sum of preferences of the
performed compatible transplantations, i.e.,

1

https://industrialinformatics.fel.cvut.cz/

max
C′⊆C(G)

∑
c∈C′

∑
e∈c

ω(e) (1)

subject to

∀ ck, cl ∈ C ′, k ̸= l : ck, cl are disjoint (2)

∀ c ∈ C ′ : |c| ≤ L (3)

where |c| denotes the number of edges in the cycle c and L is a bound on the maximum length
of each cycle. The motivation behind limiting the maximal cycle length is that a dropout from a
longer cycle would impact more participants (donors may change their minds), which is obviously
undesirable (we prefer a certain balance between efficient and stable solutions).

2.1 Example

Consider six donor-recipient pairs P with the mutual compatibility graph G given in Figure 1.
The numbers on the edges are preference weights ω(e) ∈ [0, 1]. Consider L = 4. Then, the optimal
solution is depicted in Figure 2 with the highlighted edges in blue.

p1

p2
p3

p4p5
p6

p7

0.5

0.6

0.1

0.9

1.0 0.4

0.3

0.9

0.5

1.0

0.3

0.4

0.8

Figure 1: The input compatibility graph on donor-recipient pairs.

p1

p2
p3

p4p5
p6

p7

0.5

0.6

0.1

0.9

1.0 0.4

0.3

0.9

0.5

1.0

0.3

0.4

0.8

Figure 2: Optimal solution with the objective value of 3.6, L = 4.

2

3 Rules

If you choose the contest as your semestral project, you are expected to implement a correct solver
for the Kidney Exchange Problem. BRUTE https://cw.felk.cvut.cz/brute/ will be used to
evaluate it automatically. The number of submissions is not limited. The grading combines
the ability to find optimal solutions for testing instances and the achieved rank relative to other
students (w.r.t. the objective function) on competition instances. Therefore, you can acquire some
points even if your solver is not very efficient relative to other students.

In BRUTE, you will find 3 tasks related to the contest. Each task has specific instances, rules,
and grading. The contest is split into different tasks so that we avoid re-evaluation of the instances
(which is time-consuming) and so that you can implement a specific solver for each task.

1. SP CC O: You have to implement an exact MILP solver for the problem. If your solver
solves all the instances optimally in this task, you will get 5 points. If the solver returns
a suboptimal solution for any instance in this task, then the evaluation of your solver is
stopped, and you will get 0 points in this task.

2. SP CC T: the goal is to find the best possible feasible solution within the specified time limit,
i.e., the optimal solutions are not required, and you are encouraged to implement clever
heuristics to solve these instances. For each instance in this task, you will obtain some
fraction of the point if the cost of the sum of preferences in your solution is not worse than
our threshold (6 points at max).

3. SP CC R: The goal is to find the best possible feasible solution within the specified time
limit, i.e., optimal solutions are not required, and you are encouraged to implement clever
heuristics to solve these instances. Similarly, as in SP CC T, in this task, we are also interested
in finding the best possible feasible solution within the specified time limit. The evaluation
of your solver will depend on how good your solver is relative to other students’ solvers, i.e.,
the number of points obtained will depend on your rank (4 points at max).

Some general contest rules also apply:

1. Usage of single-purpose problem-specific solvers is prohibited (i.e., a MILP solver is allowed,
but somebody’s else code for solving the Kidney Exchange Problem is not).

2. Every participant is required to write their own code. However, sharing ideas and discussion
about the problem is encouraged.

4 Input and Output Format

In SP CC O, your solver will be called as

$./your-solver PATH_INPUT_FILE PATH_OUTPUT_FILE

whereas in SP CC T and SP CC R we include a time-limit

$./your-solver PATH_INPUT_FILE PATH_OUTPUT_FILE TIME_LIMIT

• PATH INPUT FILE and PATH OUTPUT FILE: Similarly, as in homework, these parameters rep-
resent the path to the input and output files, respectively (see below for a description of the
file formats).

• TIME LIMIT: A float representing the time limit in seconds given to your solver. Your solver
will be killed after reaching the time limit, and you will be awarded 0 points. Hence, the
output of your solver is considered only if your program exits with status code 0 before it
timeouts.

3

https://cw.felk.cvut.cz/brute/

The input file has the following form (we use one space as a separator between values on one line)
n m L
i1 j1 ω1

i2 j2 ω2

i3 j3 ω3

...
...

...
im jm ωm

where n = |V |, m = |E|, ek = (ik, jk) ∈ E, and ω(ek) = ωk. ωk is a float with up to 2 decimal
place. Finally, L is a maximum length of the cycle allowed in the solution.

The output file has the following format
obj
i′1 j′1
i′2 j′2
...

...
i′k j′k

where obj is optimal objective value (rounded to 2 decimal places) and (i′k, j
′
k) ∈ E is an edge

of graph G corresponding to a transplant that should be performed based on your solution.

Example 1

Input and output correspond to the example problem in Figs. 1, 2.

Input:

7 13 4

0 1 0.5

0 4 0.8

1 4 0.6

1 5 0.1

2 1 0.9

2 4 1.0

3 2 0.4

4 3 0.3

4 0 0.9

5 4 0.5

5 6 1.0

6 0 0.3

6 1 0.4

Output:

3.6

0 1

1 5

2 4

3 2

4 3

5 6

6 0

Example 2

Unfortunately, it may happen that the graph does not contain any cycle satisfying the constraints
of our problem. However, your solution still needs to report this - even an empty set of edges is a
valid solution.

4

Input:

8 15 3

2 7 0.3

2 3 0.06

2 6 0.16

2 5 0.78

7 3 0.56

7 6 0.63

7 4 0.2

7 1 0.57

7 5 0.41

7 0 0.77

6 4 0.43

4 1 0.28

4 0 0.26

1 5 0.5

5 0 0.66

Output:

0.0

5

	Motivational Example
	Formal Problem Statement
	Example

	Rules
	Input and Output Format

