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1 Motivation

With the advent of computer technology, analytical approaches to solving technical problems fall
into oblivion. Powerful computing machines can now solve problems whose complexity would not
have occurred to anyone a hundred years ago, and if they did, they would be considered unsolvable.
Today’s times offer a great deal of opportunity to solve complex problems. Since the members
of Department of Electromagnetic Field create the team responsible for MATLAB course, the
goal of the competition project is to implement Finite-Difference Time-Domain method (FDTD),
one of the most widespread and intuitive methods for simulating electromagnetic fields in the
time domain [1]. The method is a part of plenty of commercial softwares [2, 3, 4] and offers
unsuspected possibilities, but it also has disadvantages. Immerse yourself in programming one
of the present electromagnetic field solvers, rediscover its secret nooks and crannies and try to
humiliate commercial programs.

2 Task

The idea of the challenge project is to implement 2D FDTD and to apply it to wave equation. The
implementation requires at least basic knowledge of calculus and numerical mathematics.

FDTD frequently serves as a tool capable of computing propagation of electromagnetic field
in various scenarios. In many cases, the description of electromagnetic field propagation can be
reduced to wave propagation. The problem is related to the wave equation
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second-order linear partial differential equation, where ¢ is phase velocity, u is wave amplitude,
and f is an arbitrary function of sources. Apart from electromagnetism, the wave equation is an
important concept in mathematics and in physics generally, i.e. mechanical waves in acoustics and
in fluid dynamics.

The dicretized form for evolution in 2D space reads

= V2 + f, (1)
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where ¢ € {1,..., Ny}, j € {1,..., Ny} are indexes in spatial discretization and k € {1,..., Ny} in
time discretization.

The important points to solution of each differential equation are the boundary condition. In
this case the boundary is ideally reflective. Its implementation can be done via ghost cell, focusing
on the boundary point u’fm the value of ghost cell reads
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https://elmag.fel.cvut.cz/

For more details, information about implementation see documentation, for inspiration and
examples visit YouTube video.

3 Equations Implementation

3.1 Space-time Discretization

At first, we need to discretize time and space into cells. Our simulation still has to obey laws
of physics. Therefore, the discretization is not arbitrary. The most used discretization criteria is

Courant’s condition [5, 1]

P (4)
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which will prevent nonphysical wave propagation. We can freely select discretization A, and A,
and we get A, from (4).
The condition has to be kept in mind while defining a periodic source, so that the period of
source Ty has to obey
T, > 2/, (5)

as a consequence of sampling theorem [6].

3.2 Wave Equation

The discrete form of wave equation shown above may still look quite complicated for numerical
evaluation. However, in the following MATLAB code snippet, you can see that solving this equation
is very straightforward.

% Run solver
for k = 1:Nt

% Update in time
u(:,:,3) =u(:,:,2);
u(:,:,2) =u(:,:,1);

% Update in space
for i = 2:Nx-1
for j = 2:Nx-1
u(i,j,1) = dt™2xg(i,j) + 2*%u(i,j,2) - u(i,j,3) + ...
(dt*c0/dx) "2*(u(i-1,3,2) - 2*xu(i,j,2) + u(i+1,j,2)) + ...
(dt*c0/dy) "2*(u(i, j-1,2) - 2*u(i,j,2) + u(i,j+1,2));
end
end

end

This is the core of the numerical evaluation of the equation above, and it will be present in
some form in your code. This particular implementation can still be improved in many directions.

3.3 Boundary Condition

Figure 1 shows how to handle a presence of perfect electric conductor (PEC) boundary. The
yellow discretization point is not present in our structure. However, we need it for the calculation
of selected boundary conditions. This is handled by using a point (i + 1, j) and mirroring its value
to the yellow point, see Figure 1b.

Considering PEC bounding box, the bounding condition is implemented as in the following
code snippet.


https://hplgit.github.io/fdm-book/doc/pub/wave/pdf/wave-4print.pd
https://youtu.be/v0cZjOIfwos

% Run solver
for k = 1:Nt

% Boundary condition
for i = 2:Nx-1
u(i,[1 endl,1) = u(i,[3 end-2]1,1);
u([1 end],i,1) = u([3 end-2],1i,1);
end

end
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Figure 1: How to handle a boundary. Blue dots are discretization points in space. Red dot
represents considered point. Yellow dot is ghost cell. Gray area is a boundary. Space far from
boundary (a), space with boundary on the left side (b).

3.4 Source Definition

As we need some sort of field excitation, it is necessary to add it into the code. Considering TE
modes, we assume only localized sources at position (zg,yo)

e Kronecker’s pulse (a.k.a. unit pulse) source is defined in particular place as
u(l'(),yo,t) = (5(t—t0)7 (6)

The following snippet shows how to add excitation into the code.

% Excitation definition

G = zeros(Nt, 1); % Kronecker's pulse

G(1) = 1;

xG = floor(Nx / 2) + 1; J index of position of feeding in x
yG = floor(Nx / 2) + 1; % index of position of feeding in y

% Run solver
for k = 1:Nt
% Excitation update
g(xG,yG) = G(k);
e Another type of source is harmonic field source with angular frequency w

u(zxo, Yo, t) = coswt. (7)

Once again, the addition of harmonic excitation is a straightforward task.



% Excitation definition

f =1/ (16*%dt*pi); 7 excitation frequency

G = sin(2*pi*f*dt*(0:Nt-1)); 7 excitation signal

xG = floor(Nx / 2) + 1; % index of position of feeding in x
yG = floor(Nx / 2) + 1; % index of position of feeding in y

% Run solver

for k = 1:Nt
% Excitation update
g(xG,yG) = G(Xk);

3.5 Region of Interest

We assume the region bounded by square PEC box (i.e. we are asking what is in the box). We
are observing the most simple scenario in this example, see Figure 2a. Once we start to excite the
field with a given source, we will see the evolution of wave distribution, see Figure 2b.
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Figure 2: Regions of interest. Blue dot represents feeding point. Interior bounded by PEC (a),
wave distribution in time ¢ = 46.7ns (b).

3.6 Example Code

We are providing you with the code of a simple implementation of the FDTD method. You can find
many other FDTD codes in the depths of the internet. If you are still interested in participating
in the competition, do not worry about asking for further information.

4 Criteria

4.1 Goal
The aim of the project is to:

1. implement the solution to the wave equation by FDTD in two-dimensional space with per-
fectly reflecting boundary,

2. build-up graphical user interface (GUI) allowing to set dumping coefficient, choose observa-
tion points, define perfectly reflecting obstacles and sources,

3. and animate the evolution during computation in every time step.

4.2 General

e An unlimited number of students can select this project. However, no collaboration between
students is expected.



4.4

Complete the challenge till May 15, 2022, 23:59 and submit it via BRUTE.
Contact matlab@fel.cvut.cz with any questions.

The project should be submitted, including short documentation for each file describing how
it works.

Like for regular projects, a short presentation (a couple of minutes) is expected.
The resulting project should be in the form of an application with GUI using uifigure.

Use MATLAB version R2020a or newer (necessary for the comparison of normalized time
discussed later).

No external MATLAB toolboxes or third-party libraries are allowed.

It is possible to always withdraw from the competition and select one of the regular projects.
This decision should be discussed with the teachers, and their approval is required.

Technical

Implement 2D FDTD in MATLAB based on the equation (2).
Use discretization space 500 x 500.
Build GUI, which allows to:

choose entire domain dumping coefficient,
add/delete perfectly reflecting obstacles and sources (unit pulse or periodic),
set number of iterations Vg,

measure evaluation time teya1,

AN

pick points to display the whole evolution over time.

Animate the evolution during computation.

There are no limits to fantasy.

Evaluation

Competition criteria is normalized time per computation iteration.
1. In GUI, measure evaluation time teyal,

2. display normalized time in command line

teval
t = — 8
o Ktbench ’ ( )

where tpencn is evaluated as tBench = sum(mean(bench(3))); immediately after sim-
ulation,

3. the normalized time will be credited.

The fastest! project will be awarded.

5 List of Awards

By participating in competition you will automatically be rewarded with some of the unique
MATLAB merchandise, see Figure 3.

The three best solutions will also be rewarded with Humusoft vouchers for MATLAB courses,
where you can learn some of the advanced functionalities of MATLAB language, such as Simulink,
parallel computations or embedded coding.

IWhen matching normalized times to 2 digits, the appearance and functionality of the GUI decide.


https://cw.felk.cvut.cz/brute/
matlab@fel.cvut.cz

Figure 3: Professionally arranged demonstration of MATLAB merchandise that you can win. %
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Disclaimer

Small changes both in the challenge assignments and in the organization of the contest are reserved.
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