
Implementation of the algorithm 1 from
"Optimisation based path planning for car parking in

narrow environments"

Maksym Ivashechkin, Jiří Vlasák, Antonín Novák
Tuesday, 14:30-16:00

Open Informatics
ivashmak@fel.cvut.cz

New experiments starting on the page 6 in the separate subsection "New experiments" with time measurements.
27.05.2020

I. ASSIGNMENT

A. Problem Statement

The task is to implement the algorithm 1 from the "Optimisation based path planning for car parking in narrow environments"[1].
The algorithm is used for searching the optimal sequence of car positions (x,y-coordinates and orientation angle) to the predefined
parking slot. The procedure includes also solving the optimization problem of finding the best control input of a car. Control
input is a tuple of steering angle and step length of a car. Both values are bounded such that steering angle can not increase
the properties of the car and the recommended in [1] step length is relatively low number equals to 0.2 meter. The control
input describes how vehicle moves in the specific moment (iteration of the algorithm). The optimization is a quadratic function
with non-linear constraints, modeled in the way to minimize the distance of the current position of the car (x,y coordinate and
orientation) to the target position (i.e., parking slot).

II. PROBLEM SOLUTION

A. Design

The algorithm 1 contains one while-loop which terminates when either number of maximum iterations reached or number of
maximum direction changes reached, or distance of current position and the target one falls under threshold. In the beginning
vehicle is located in the phase B – area, where it has to do a manoeuvre. After that it switches to the phase A and moves directly
to the parking place. Every iteration requires to solve the optimization task to find the optimal control input which subjects to
physics of the vehicle and satisfies that all collisions (obstacles) are avoided. If such optimization procedure fails then car changes
its direction (e.g., moves not forward but backward and vice versa). Otherwise, if the cost of current optimization function is
smaller than previous cost then the new position of the car is updated by found control input; however, if cost is higher than
previous then car changes its direction again.

B. Implementation

The core is implementing the optimization procedure of the algorithm 1. It has been done in Python with Gurobi solver [2].
Since the cost function is quadratic and the constraints and equalities are non-linear (including also trigonometric functions) so
in Gurobi 9.0 the parameter NONCONVEX has to be set to 2, otherwise Gurobi can not solve it (see here).

The most difficult part is dealing with obstacles (which by assumptions are convex polygons). The proposed method in [1]
is using Minkowski sum, however these constraints must be written in Gurobi as simple as possible (something using standard
operations like additive, multiplication, inequalities), this is though not the case for Minkowski sum which requires a lot of local
variables and computations. So, another way to avoid collisions is to check segments’ intersection. For example, if car has 4
segments (4 sides), the obstacles has in average M segments (around 4) and there are N obstacles then 4×M ×N segments’
intersections has to be checked. The simple method to verify if two segments intersect is shown in GeeksForGeeks: it takes one
segment and computes orientation of points of the second segments and vice versa. Two segments intersect if they both have
different orientations for both pair of points (it is nicely visualized in 1). Let us have two segments of points p1, p2 and q1, q2,
this method could be written in the following way:

https://support.gurobi.com/hc/en-us/articles/360013156432-Model-types-that-Gurobi-can-solve
https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/


Obrázek 1: Intersection of segments from GeeksforGeeks.

{
sign((p2y − p1y)(q1x − p2x)− (p2x − p1x)(q1y − p2y)) 6= sign((p2y − p1y)(q2x − p2x)− (p2x − p1x)(q2y − p2y))

sign((q2y − q1y)(p1x − q2x)− (q2x − q1x)(p1y − q2y)) 6= sign((q2y − q1y)(p2x − q2x)− (q2x − q1x)(p2y − q2y))

Since, constraints for Gurobi must be the opposite (segments must not intersect) then equations should be negated, so either
the orientation is the same for the first segment or for the second. Also the signum function should be rewritten to something
simpler, for example:

sign(x) = sign(y) is equivalent to 0 ≤ x · y (1)

The OR condition is rewritten using the big-M format and binary variable s, so final constraints for two segments are{
0 ≤ ((p2y − p1y)(q1x − p2x)− (p2x − p1x)(q1y − p2y)) · ((p2y − p1y)(q2x − p2x)− (p2x − p1x)(q2y − p2y)) + (1− s)M

0 ≤ ((q2y − q1y)(p1x − q2x)− (q2x − q1x)(p1y − q2y)) · ((q2y − q1y)(p2x − q2x)− (q2x − q1x)(p2y − q2y)) + sM

The advantage of this segments’ verification over many others is that it does not require division – which could not be used
in Gurobi solver.

Since, the maximum range where a vehicle could move in one iteration is known (by maximum step length and maximum
steering angle – control input) then only a few neighborhood obstacles could be considered – which is a significant speed up.
If there are no obstacles the optimization task is solved quite fast (around a few milliseconds). If there are one or two obstacles
it solves usually a few seconds but sometimes if obstacles are very closed to the car then optimization process can take even
minutes. Unfortunately, the precise correlation when and why this happens is not fully clear but Gurobi has a time limit option
and furthermore even if one optimization step fails it does not mean that everything fails – the car has to change direction.
However, if the optimization procedure fails two times in a row it means that the whole algorithm fails, because the optimization
task failed for both directions and there is no sense to continue (this was not mentioned in the [1] but during the implementation
it seems reasonable to add such condition).

The implementation of the algorithm 1 is under gitlab repository: https://gitlab.fel.cvut.cz/ivashmak/ko_semestral_project

https://gitlab.fel.cvut.cz/ivashmak/ko_semestral_project


C. Lazy constraints for obstacles

Obrázek 2: Blue (resp. red) (dashed) lines are segments of the car (resp. convex obstacle). There is an intersection of segments
(p,q) and (a,b).

There could be many obstacles around the car in the moment for solving the optimal input control. Obviously, checking all
segments of car and obstacles may be computationally exhaustive. Furthermore, it is not even necessary to write constraints for
all segments because car may not intersect obstacle at all or only some segments may intersect.

Fortunately, Gurobi deals with lazy constraints when optimal solution is found. So, when the best optimal input is obtained
then segments of near obstacles must be checked. If there exists two segments which intersect then constraint for those segments
has to be added.

The method presented in previous section for writing constraint for two segments intersection can not be used in lazy constraints
because proposed inequalities are quadratic (w.r.t. unknown car position) but Gurobi requires lazy constraints to be linear (see
cbLazy). In this case let us consider car segment (p,q) and obstacle segment (a,b) which intersect (see figure 2). Either the
point p or q must be inside convex obstacle. To find out which point, let l1 = a× b be a line passing through points a and b
and similarly let l2 = b× c be a line passing through points b and c. Lines l1 and l2 are two consecutive lines of the obstacle,
so if point t lies inside the obstacle then sign(l>1 t) = sign(l>2 t) so the linear constraint for Gurobi will be the following:{

l>1 t ≤ 0 if l>1 t > 0

l>1 t > 0 if l>1 t ≤ 0

It means that the point t (in figure 2, t = q) is forced to be outside the convex obstacle.

The disadvantage is of course in verifying segments’ intersection for every found optimal solution but it is still much faster than
writing all constraints at one time. Experimentally, this approach is much faster comparing to described in the previous section.

https://www.gurobi.com/documentation/9.0/refman/py_model_cblazy.html


III. EXPERIMENTS

A. Results

Obrázek 3: The sequence of moves in the left image for data with removed obstacles. In the right image the same data with
obstacles.

0 10 20 30 40 50 60
iteration

100

101

102

103

LP
 v
al
ue

0 10 20 30 40 50 60
iteration

100

101

102

103

LP
 v
al
ue

Obrázek 4: The y-axis shows (log) costs of optimization function. The x-axis shows the iteration. The right graph has a small
difference in iterations 15-16 (compared to the left graph) caused by obstacle.

In the figure 3 is example of sequence of moves from the initial car position (red box with a cross) to the parking slot (green
box with a cross and colorful points). Pink boxes and yellow curve show the found sequence. Blue squares in 3 are obstacles.
Graphs below in the figure 3 show the cost of optimization function. Note, that cost values sometimes higher than previous. The
reason is that in [1] is proposed to accept in some cases a worse solution (in terms of the cost value) but not a k-worse (to be
discussed in Discussion section).

The optimization procedure struggles at most when the vehicle is almost at the target position. As could be seen from images
3, 5, 7, 21 and graphs 4, 6, 8, 22. Something strange is going on near parking slot, similarly the costs frequently alternate and
could not converge.



Obrázek 5: Easy cases with obstacles.

0 20 40 60 80 100 120
iteration

100

101

102

103

104

LP
 v
al
ue

0 50 100 150 200 250 300 350
iteration

10−1

100

101

102
LP

 v
al
ue

0 100 200 300 400
iteration

100

101

102

103

LP
 v
al
ue

Obrázek 6: The corresponding cost values

Obrázek 7: Hard cases with obstacles.

0 100 200 300 400 500 600 700 800
iteration

10−1

100

101

102

103

104

LP
 v
al
ue

0 200 400 600 800 1000
iteration

101

102

103

LP
 v
al
ue

0 50 100 150 200 250
iteration

10−2

10−1

100

101

102

103

104

LP
 v
al
ue

0 25 50 75 100 125 150 175 200
iteration

100

101

102

103

104

co
st
 v
al
ue

Obrázek 8: The corresponding cost values



Obrázek 9: "Failed"cases with obstacles. The vehicle tried to avoid obstacle but the maximum number of iterations / direction
changes reached.

0 200 400 600 800 1000 1200 1400 1600
iteration

102

2×102

3×102

4×102

6×102

LP
 v
al
ue

0 200 400 600 800 1000
iteration

103

2×103

3×103

4×103

6×103

LP
 v
al
ue

0 50 100 150 200 250 300
iteration

103

2×103

3×103

co
st
 v
al
ue

0 500 1000 1500 2000
iteration

2×102

3×102

4×102

co
st
 v
al
ue

Obrázek 10: The corresponding cost values

B. New experiments

In this subsection are briefly discussed (in captions) 10 different scenarios. The first image in a row is output sequence of
the car. The second figure is a graph of the cost function. The third figure is time spent for one iteration (in milliseconds).
And the last figure shows cumulative time of iterations (in seconds, so the last value is the total time of the algorithm). The
experiments were run on the server INTEL(R) XEON(R) CPU E5-2630 V2 @ 2.60GHZ with 24 processors. Gurobi was using
all 24 threads. The time limit for one iteration was set to 1 minute (for slower computers timeout should be bigger).

The new experiments were run with lazy constraints for avoiding collisions so the average time of one iteration even containing
obstacles is several hundred of milliseconds. By my observation the number of lazy constraints which was added during the
running is in average less than 1 equation (many times none was needed).

0 20 40 60 80
iteration

10−2

10−1

100

101

102

103

co
st
 v
al
ue

0 20 40 60 80
iteration

100

200

300

400

500

ti
m
e,
 m

ls

0 20 40 60 80
iteration

0

2

4

6

8

10

12

cu
m
. t
im

e,
 s
ec

Obrázek 11: Easy case. Algorithm finished in less than 100 iterations. The cost function decreased very quickly. The total time
of the whole sequence is 13.27 seconds, the average time of one iteration is around 150 milliseconds.



0 10 20 30 40
iteration

10−2

10−1

100

101

102

103

co
st
 v
al
ue

0 10 20 30 40
iteration

100

200

300

400

500

600

700

ti
m
e,
 m

ls

0 10 20 30 40
iteration

0

1

2

3

4

5

cu
m
. t
im

e,
 s
ec

Obrázek 12: Another easy case. The sequence was found in less than 100 iterations. The total time is 5.71 seconds.

0 200 400
iteration

101

103
co

st
 v
al
ue

0 200 400
iteration

0

200

400

600

800

ti
m
e,
 m

ls

0 200 400
iteration

0

50

100

cu
m
. t
im

e,
 s
ec

Obrázek 13: The car successfully avoided obstacle (in a little risky way) in around 70 iterations. However, other 400 iterations
the algorithm was struggling to obtain desired angle of parking. It can be seen from graph that the cost was alternating after the
drop and also, the time for solving increased. The total time is 116.92 seconds.

0 500 1000 1500 2000 2500 3000 3500 4000
iteration

100

101

102

103

104

co
st
 v
al
ue

0 500 1000 1500 2000 2500 3000 3500 4000
iteration

0

100

200

300

400

500

600

ti
m
e,
 m

ls

0 500 1000 1500 2000 2500 3000 3500 4000
iteration

0

100

200

300

400

500

600

cu
m
. t
im

e,
 s
ec

Obrázek 14: Because of the obstacle ahead it took around 2000 iterations for algorithm to avoid collision. After there was a
significant drop in the cost. Then algorithm spent other few thousand of iterations to find the right angle of parking. The total
time is 581.91 seconds.

0 100 200 300 400
iteration

100

101

102

103

co
st
 v
al
ue

0 100 200 300 400
iteration

0

200

400

600

800

1000

ti
m
e,
 m

ls

0 100 200 300 400
iteration

0

20

40

60

80

100

120

140

cu
m
. t
im

e,
 s
ec

Obrázek 15: The algorithm reached the target position relatively quickly (in around 180 iterations) avoiding obstacles. However,
most of the time took rotating to the desired parking angle. The total time is 146.78 seconds.



0 1000 2000 3000 4000 5000
iteration

100

101

102

103

104

co
st
 v
al
ue

0 1000 2000 3000 4000 5000
iteration

0

200

400

600

800

1000

ti
m
e,
 m

ls

0 1000 2000 3000 4000 5000
iteration

0

250

500

750

1000

1250

1500

1750

cu
m
. t
im

e,
 s
ec

Obrázek 16: Example, where the problem was again in reaching the target parking angle, as the car got to the desired position
fairly quickly. From graph it can be seen that rotating around parking spot took enormously a lot of time and iterations but
without success by the end. The total time is 1885.67 seconds ∼= 31 minutes.

0 10 20 30 40 50 60 70 80
iteration

100

101

102

103

104
co

st
 v
al
ue

0 10 20 30 40 50 60 70 80
iteration

0

100

200

300

400

500

600

700

ti
m
e,
 m

ls

0 10 20 30 40 50 60 70 80
iteration

0

2

4

6

8

10

12

14

cu
m
. t
im

e,
 s
ec

Obrázek 17: Easy case, the algorithm spent some time for obtaining target angle of parking. The total time is 14.69 seconds.

0 500 1000 1500 2000 2500 3000 3500 4000
iteration

10−1

100

101

102

103

104

co
st
 v
al
ue

0 1000 2000 3000 4000
iteration

0

200

400

600

800

1000

ti
m
e,
 m

ls

0 1000 2000 3000 4000
iteration

0

50

100

150

200

250

300

350

cu
m
. t
im

e,
 s
ec

Obrázek 18: Car parked backwards omitting the obstacle. It took more than 3000 iterations to find the sequence to avoid collision.
The total time is 353.65 seconds.

0 1000 2000 3000 4000 5000 6000
iteration

100

101

102

103

co
st
 v
al
ue

0 1000 2000 3000 4000 5000 6000
iteration

0

200

400

600

800

ti
m
e,
 m

ls

0 1000 2000 3000 4000 5000 6000
iteration

0

200

400

600

800

1000

cu
m
. t
im

e,
 s
ec

Obrázek 19: Similarly as in previous scenario the car started parking backwards but after avoiding obstacle it rotated to get the
target parking angle (it took most of the time). The total time is 1003.02 seconds.



0 20 40 60 80 100
iteration

10−2

10−1

100

101

102

103

104

co
st
 v
al
ue

0 20 40 60 80 100
iteration

0

200

400

600

800

1000

ti
m
e,
 m

ls

0 20 40 60 80 100
iteration

0

5

10

15

20

25

cu
m
. t
im

e,
 s
ec

Obrázek 20: Easy case of parking forwards. The total time is 24.49 seconds.

So, seems to be that one of the main weakness of the algorithm (probably implementation itself or Gurobi solver) is getting
the desired angle of parking. For many scenarios the car reached target position (x, y-coordinates) mostly without problems, but
rotating in the parking spot took many iterations and time. However, this can be regulated by the cost function, i.e., by decreasing
the weight of having parking angle closed to the target one.

C. Discussion

Obrázek 21: Two first images share the same scenario with different weight of the target angle for the optimization function.
The left image has lower weight so the car reached the target position faster. On the right image the angle’s weight is higher so
the vehicle moves in the way to keep the angle closed to the target one. The third image is different scenario but with the same
angle weight as on the second image.

0 100 200 300 400 500

100

101

102

103

0 100 200 300 400 500

102

103

0 200 400 600 800 1000
iteration

101

102

103

104

co
st
 v
al
ue

Obrázek 22: The corresponding costs values.

There at least two things to discuss:

• The parameter k ∈ [1, 2) (the proposed value in [1] is 1.5), which is used in algorithm 1 to compare the current
and previous cost of optimization function (l∗oi > k l∗oi−1

), allows to accept the solution which may be worse than
previous (l∗oi > l∗oi−1

) but less than k l∗oi−1
. This was done to make a possibility for the car to change directions when



going to parking slot. However, in the experiments were a lot of cases when the sequence of costs was increasing
l∗ot < l∗ot+1

< ... < l∗ot+n
but the condition l∗ot ≤ k l∗ot−1

for each pair was satisfied, the car was moving nowhere. So,
there are two options to avoid this. First, set k to very low number (e.g., 1.0001), so a little bit worse solution is still
accepted. The second option, which was used in the experiments, is to keep k the same as recommended in [1] but
compare the current cost versus the minimum over all costs, i.e., l∗oi > k mini l

∗
oi−1

so the worse solution can be still
accepted but not k-worse than the minimum one.

• The weight of target angle can influence the algorithm very much as shown in figure 21. If the weight of target angle
is a quite low number then car reaches the target position faster, otherwise the vehicle tries to save the target angle and
moves in an awkward way.

IV. CONCLUSION

The implementation is of course not very accurate neither super fast. The are a few reasons for this:

• The bugs in the implementation. I hope there are not but since I am biased to implementation it is difficult to spot
mistakes.

• The slowness of Python or Gurobi (which for academic usage does not use all computational power) or laptop.

• The constants proposed in [1] are very important and should be re-considered for our tasks.

There is definitely a way to speed up collision avoidance considering not whole neighborhood obstacles but also the separate
segments which could possibly intersect in the solving step.

REFERENCE

[1] Patrik Zips, Martin Böck, and Andreas Kugi. 2016. "Optimisation based path planning for car parking in narrow environments". Robot. Auton. Syst. 79,
C (May 2016), 1-11.

[2] Gurobi Optimization, LLC, "Gurobi Optimizer Reference Manual", 2020, "http://www.gurobi.com".


	Assignment
	Problem Statement

	Problem solution
	Design
	Implementation
	Lazy constraints for obstacles

	Experiments
	Results
	New experiments
	Discussion

	Conclusion
	Reference

