Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

The Catering Problem

Motivation

A catering company to cook n dishes, but has only one available oven. At most a single dish can
be inside the oven at one time.

Each dish ¢ has its earliest time when it can be put into the oven 7; (since it needs to be prepared
before it is put into the oven), the latest time it should be taken from the oven d; (since the
customers do not want to wait too long), and the time it needs to stay in the oven p;. The goal is
to find the vector of times s = (o, .. ., S,_1) (denoting the times when each dish is put into the
oven) such that the finish time of the last dish is minimal.

Input
You are given the following:

e number of dished n

e parameters 7;, d; and p; for each dish ¢

For the testing purposes, you can experiment with the following instance:

In [1]: n=s

params = {
0: {'r': 20, 'd': 45, 'p': 15},
1: {'r': 4, 'd': 30, 'p': 19},
2: {'r': 5, 'd': 80, 'p': 20},
3: {'r': 17, 'd': 70, 'p': 8},
4: {'r': 27, 'd': 66, 'p': 7}

}

# Note: parameter d_1 can be obtained by params[1]["d"]

Output

You are expected to find the vector s = (so, . .., S,—1) denoting the times when each dish
should be put into the oven.

The optimal solution vector for the given instance is s = (23,4, 53, 38, 46).

Exercise

Your task is to formulate the ILP model of the catering problem, solve it, and extract the vector s.
The example solution follows:

1of 3 3/6/2023, 6:09 PM



Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

Hint: to ensure that any two dishes ¢ and 7 are not overlapping in the oven, you need to ensure
that one of the following constraints holds: s; + p; < s; or s; + p; < s;. This might be perhaps
done using big-M...

In [2]: import gurobipy as grb # import Gurobi module

# model --------- oo
model = grb.Model()

# - ADD VARIABLES
# TODO

# - ADD CONSTRAINTS
# TODO

# - SET OBJECTIVE
# TODO

# call the solver ----------- oo o
model.optimize()

# print the solution --------------""““--- -
print("\nSOLUTION:")
# TODO

Set parameter Username

Academic license - for non-commercial use only - expires 2024-02-16

Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64)

Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with © rows, @ columns and © nonzeros

Model fingerprint: 0xf9715dal

Coefficient statistics:

Matrix range [0e+00, ©e+00]
Objective range [©e+00, 0e+00]
Bounds range [0e+00, ©e+00]
RHS range [0e+00, ©e+00]

Presolve time: 0.00s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 0.000000e+00 ©.000000e+00 0s

Solved in @ iterations and 0.01 seconds (0.00 work units)
Optimal objective ©.000000000e+00

SOLUTION:

Solution visualization

2 0of 3 3/6/2023, 6:09 PM



Catering http://localhost:8888/nbconvert/html/lab_03/Catering.ipynb?download=false

In [3]: import matplotlib.pyplot as plt
def plot_solution(s, p):
s: solution vector
p: processing times
fig = plt.figure(figsize=(10,2))
ax = plt.gca()
ax.set_xlabel('time")
ax.grid(True)
ax.set_yticks([2.5])
ax.set_yticklabels(["oven"])
eps = 0.25 # just to show spaces between the dishes
ax.broken_barh([(s[i], p[i]-eps) for i in range(len(s))], (@, 5),
facecolors=("tab:orange', 'tab:green', 'tab:red', 'tab:blue', 'tal
# TODO: plot your solution
plot_solution([23.0, 4.0, 53.0, 38.0, 46.0], [params[i]["p"] for i in range(n)])
N |||||||||||||||||||||||||||||||||||||‘||||||||||||||||||||||||||||||||||||
10 20 30 40 50 &0 70
time
In [ ]:

30of3 3/6/2023, 6:09 PM



