
B3M33HRO HW4
Grasping

1 Introduction
You are provided with point clouds from noisy real depth cameras. The individual point clouds are different
views on an object on a table. Your task is to combine them to get a full view of a scene and use it to get grasp
from two pipelines: GraspIt! and GPD. Examples of grasps can be seen in Figure 1.

(a) Example grasp from GraspIt! (b) Example grasp from GPD.

Figure 1: Examples of grasps.

2 Assignment
• Download assignment from the course website.

• Open Jupyter notebook and the code template provided.

– In the docker image, run jupyter-notebook in the terminal and open http://localhost:8888 in browser
(in Docker or in your machine).

• Complete the code. Please, pay attention to code quality and performance.

• Set limits in z-axis for the bounding box of workspace.

– Try something and update it based on visualizations.
– Different minimal values may be needed for GraspIt! and for GPD.

• Combine the provided point clouds in one. You can process them as you want and as needed—downsample,
outliers removal, bounding box crop.

– The processed point cloud should have the right number of points and should not contain unnecessary
holes

– Decide whether to use the processing on the final point cloud, or on individual samples.
– See Open3D Point Cloud Class and Open3D Point Cloud Tutorial.

• Prepare point cloud for GraspIt!. It must contain only the object, without the table.

1

http://graspit-simulator.github.io
https://github.com/atenpas/gpd
http://localhost:8888
http://www.open3d.org/docs/release/python_api/open3d.geometry.PointCloud.html
http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html


• Create a mesh from the point cloud, translate it to position (0,0,0), and save it to file.

– Select the appropriate method that will work in GraspIt!
– See Surface Reconstruction Tutorial and Open3D Triangle Mesh Class.
– Note: The item in the point cloud is an opened box, i.e., it is concave and has a hollow part.

However, it is hard to obtain mesh for this point cloud, so it is fine if your mesh looks like a closed
box—see the example in Fig. 1a.

• Open the GraspIt interface and:

– Clear the World;
– Import fetch_gripper as a robot;
– Import your mesh as a graspable body;
– See GraspIt! commander API.
– Note: if you see only black/grey after you load the robot and the body, zoom-out in the GraspIt

GUI.

• Run the Eigengrasp planner and sort the grasp by ϵ-quality.

– ϵ-quality: the closer to 1, the better. Note: if you close the GraspIt interface, you will probably
need to restart the kernel in the notebook before you run it again.

• Check if the grasp looks like you would assume and take a picture of it.

• Prepare point cloud for GPD.

– Modify the code you used for GraspIt! point cloud.
– This point cloud must have “a table” under the object.
– It is better to translate it into (0,0,0) otherwise you will have to zoom out in the GPD output.

• Run the GPD and take a picture of the output.

– Make it run as fast as possible.
∗ The run-time can vary on different computers, but if the GPD runs for more than a 5seconds, it

is too much even on a slow computer.
∗ Right processing of the point cloud can help you to reduce time, or you can play with the values

in eigen_params.cfg (in Docker located in /gpd/cfg/eigen_params.cfg.

3 Points
• Correct GraspIt! output - 3 points

– Screenshot of the grasp
– Correct code

• Correct GPD output - 2 points

– Screenshot of the grasp
– Correct code

• Code quality and performance - 2 points

2

http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html
http://www.open3d.org/docs/release/python_api/open3d.geometry.TriangleMesh.html
https://github.com/graspit-simulator/graspit_commander/blob/master/src/graspit_commander/graspit_commander.py

	1 Introduction
	2 Assignment
	3 Points

