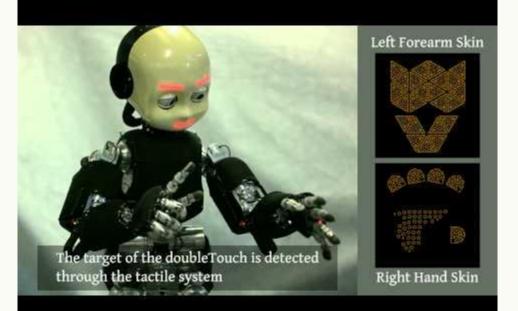
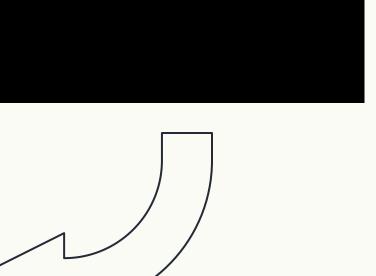
Embodied intelligence, baby humanoids, learning brain-like robot body models

Doc. Matěj Hoffmann, Ph.D. Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University in Prague <u>matej.hoffmann@fel.cvut.cz</u> <u>https://sites.google.com/site/matejhof</u>

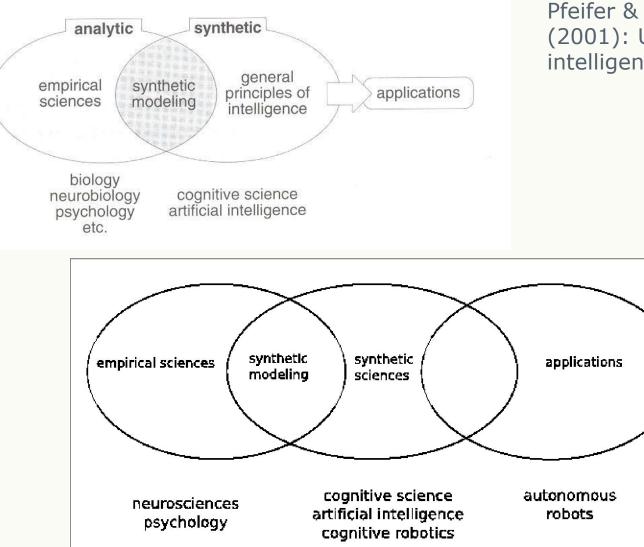
https://cyber.felk.cvut.cz/research/groups-teams/humanoids/


Outline


- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied Intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

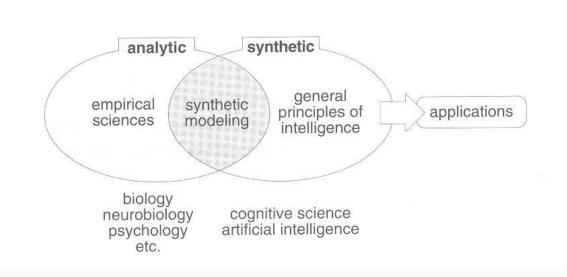
Embodied AI

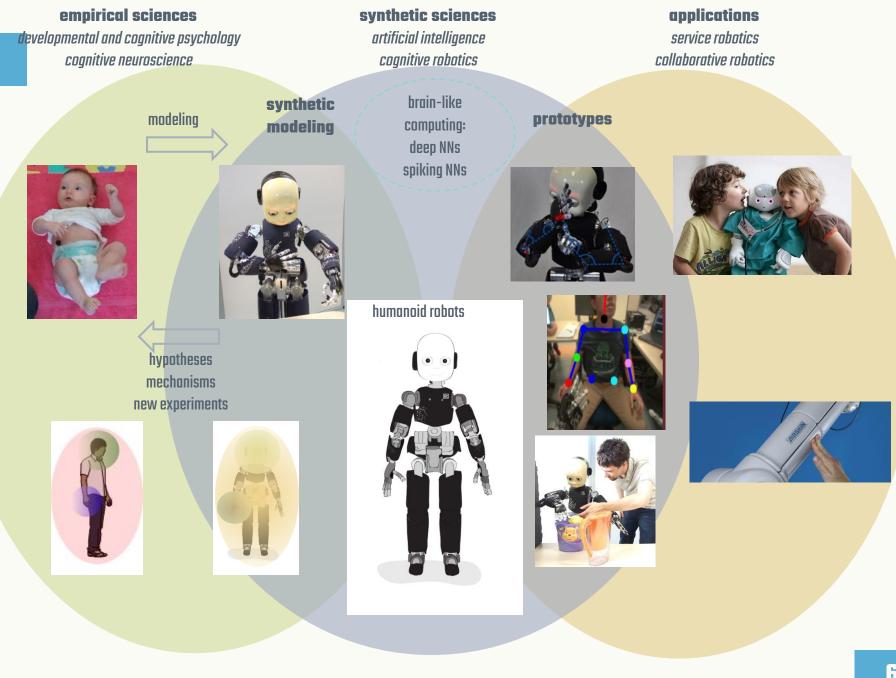
Our research examples and student projects


robots as embodied computational models of child and brain development

autonomous, adaptive, resilient, and self-calibrating robots

Synthetic methodology ~ understanding by building




Pfeifer & Scheier (2001): Understanding intelligence

Goals

[Pfeifer and Bongard, 2007, Chapter 3]:

- 1. understanding natural forms of intelligence
- 2. abstracting general principles of intelligent behavior
- 3. building intelligent artifacts

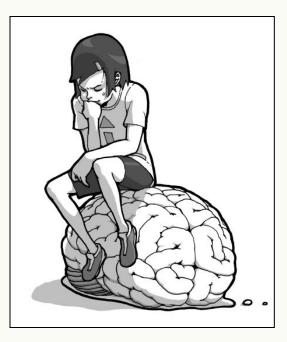
All synthetic, yet different...

Is walking intelligent?

What it takes to walk?

Is playing chess intelligent?

Honda Asimo (2018) <u>https://youtu.be/1urL_X_vp7w</u>


Passive Dynamic Walker – Tad McGeer (1990) <u>https://youtu.be/W0PED7I5Lac</u>

Outline

- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied Intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

Embodied AI

Our research examples and student projects

Classical: "intelligence as computation"

Illustration: Shun Iwasawa, from Pfeifer, R: How the body shapes the way we think, 2007

Birth of Artificial Intelligence

- 1956 onwards: Artificial Intelligence
 - 1956 Dartmouth Conference / McCarthy coins term "artificial intelligence" / first running AI program (Logic Theorist)
 - from middle '50s to late '80s : '**Classical Al**' (e.g. Newell, Simon, McCarthy)
 - human cognition = a set of 'rational activities' (reasoning, language, formal games...);
 - intelligent artifacts = programs for computers

Classical AI = modelling "high level" capabilities (mainly) through computer programs detached from robotic bodies

Slide source: Hagen Lehmann

Classical AI – theoretical positions

Intelligence ~ abstract symbol processing Functionalism

- Algorithm / software matters
- Hardware (on which it runs)
 - does not matter
- Physical Symbol Systems
 - Hypothesis (Newell and Simon
- Digital computer
 - Key tool
 - Metaphor for the mind!

Nicknamed GOFAI – Good Old-Fashioned Artificial Intelligence (Haugeland 1985)

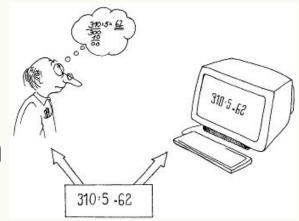
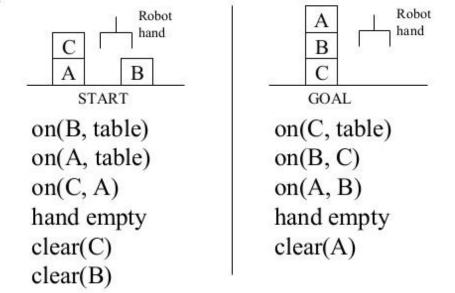


Fig. 2.4 from Pfeifer & Scheier 1999

Where it works nicely... search

IBM Deep Blue chess computer, 1997


Google Deep Mind AlphaGo, 2016

- formally precisely defined discrete state space
- program has access to complete information (fully observable)
- deterministic state evolution
- not real-time (or soft real time)
- Premiere methods e.g.: search, deep reinforcement learning

Where it works nicely... planning

Example : Blocks World

•STRIPS : A planning system – Has rules with precondition deletion list and addition list

Connecting to the real world - representation

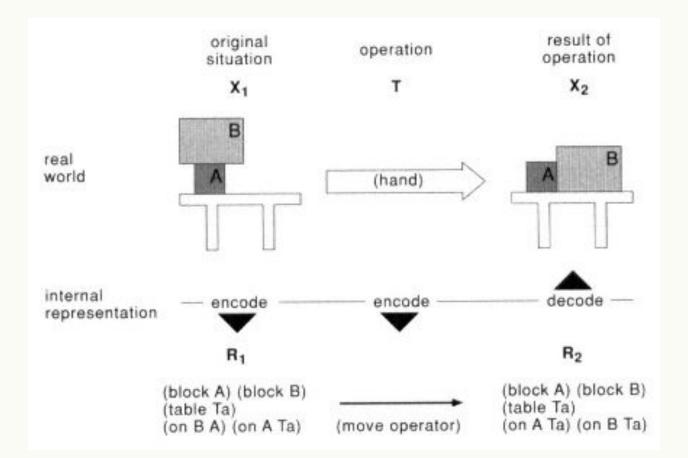
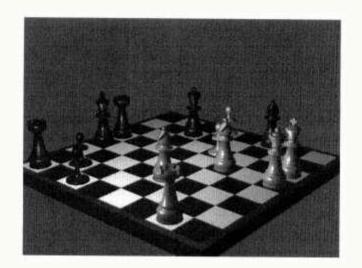
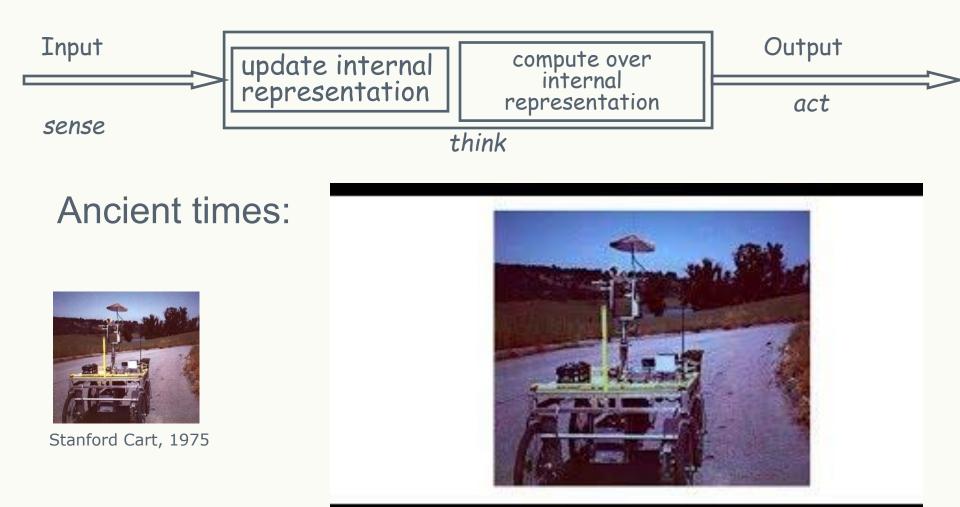
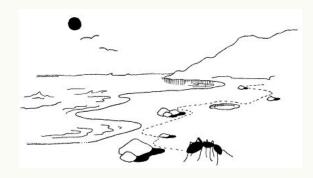



Fig. 2.5 from Pfeifer & Scheier 1999

From formal world to real world


Chess


From formal world to real world

GOFAI fundamental problems

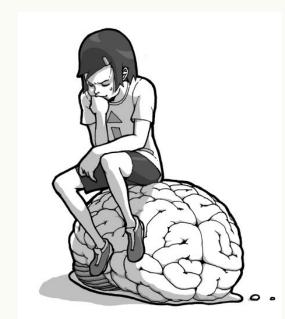
Frame problem

- How can a model of a continuously changing environment be kept in tune with the real world?
 Symbol grounding problem (Harnad, 1990)
 Frame of reference problem
 - Ant on the beach (Herbert A. Simon)
 - simple behavioral rules
 - complexity in interaction, not in brain

GOFAI problems viewed today

Some problems have been mitigated through

- New algorithms
 - Probabilistic reasoning (e.g. Thrun et al. 2005)
 - Learning
 - Reinforcement learning
 - "Deep" neural networks
- Higher computational power
- => real-time operation in real world is possible


Google self-driving car today

What remains?

AI still heavily biased toward representation and computation.

vs. natural (also human) intelligence:

- embodied
- emergent from sensorymotor and interaction processes

Research questions

Classical AI

- Thinking, reasoning, abstract problem solving
- **Embodied Intelligence**
 - Movement, physical interaction with the real world

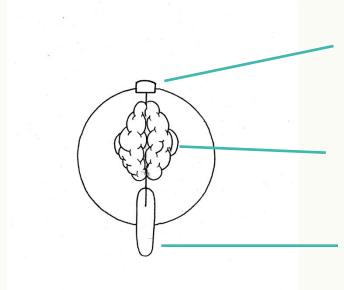
"Why do plants not have brains? The answer is actually quite simple: they don't have to move."

Lewis Wolpert, UCL

Outline

- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation Embodied intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

Embodied AI

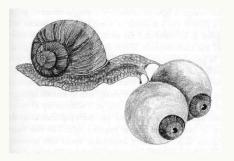

Our research examples and student projects

Embodiment

"intelligence requires a body" Interplay / task distribution

- Brain
- Body (morphology shape, materials, …)
- Environment
- Principal of ecological balance
 - match in complexity of sensory, motor, and neural system

Ecologically unbalanced systems



sensor for one quality (e.g. temperature, light)

very large brain

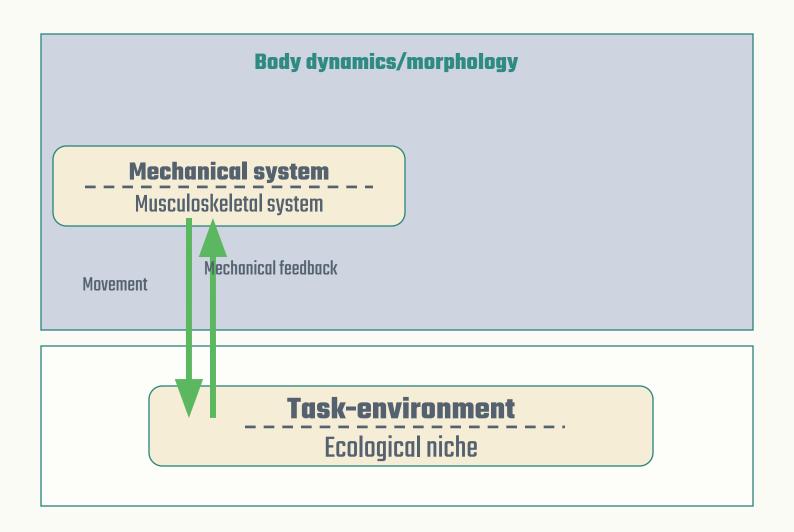
one motor

Physical implications of embodiment

~ morphology facilitating control Is brain/computation needed for walking? Passive dynamic walkers (McGeer 1990)

- "pure physics walking"
- no computer
- no motors
- no sensors

Morphology: - shape of feet - counterswing of arms - friction on bottom of feet



Cornell PDW with arms, Collins et al. 2001

https://youtu.be/e2Q2Lx8O6Cg

Steve Collins, Passive dynamic-based walker

Schematics based on Pfeifer et al., Science 2007

Self-stabilization

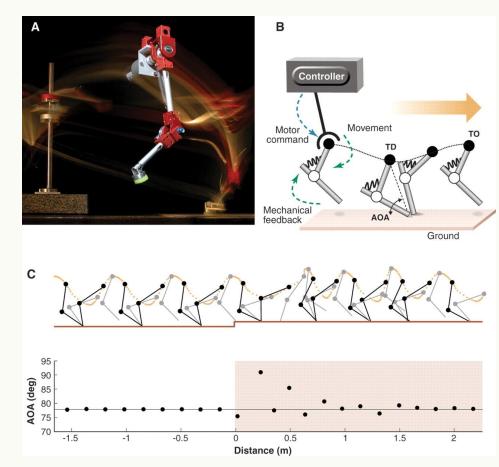
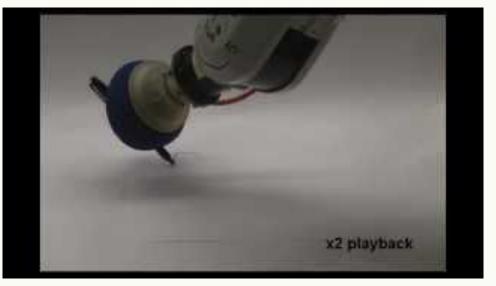
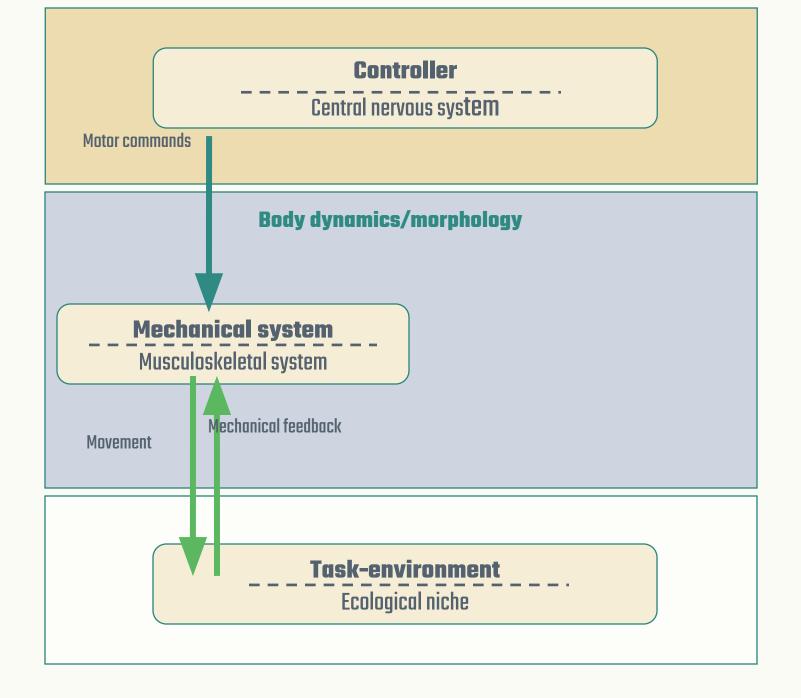



Fig. adapted from Blickhan et al. 2007

Grasping with coffee balloon grippers



https://youtu.be/ZKOI_IVDPpw

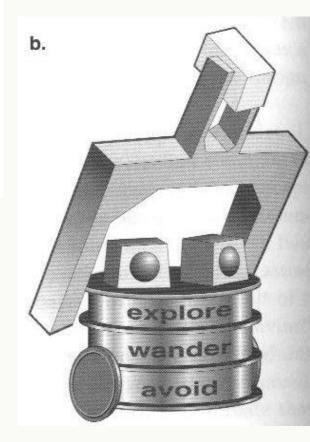
Image: John Amend (jra224@cornell.edu)

Brown et al. 2010

Outline

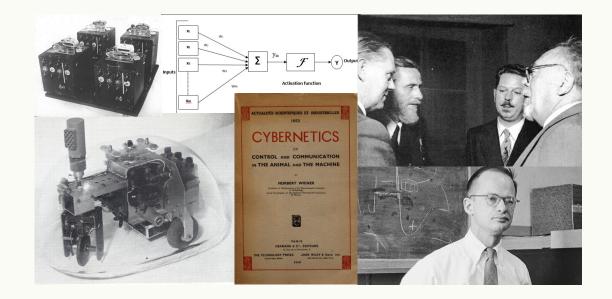
- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

Embodied AI


Our research examples and student projects

Grey Walter Turtle, 1940s

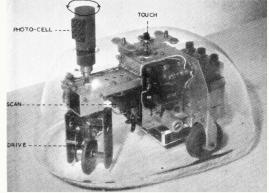
V. Breitenberg, 1980s



R. Brooks, 1980s subsumption architecture

Middle '40s: Cybernetics - modelling intelligence through machines (Wiener 1948, von Neumann 1948)

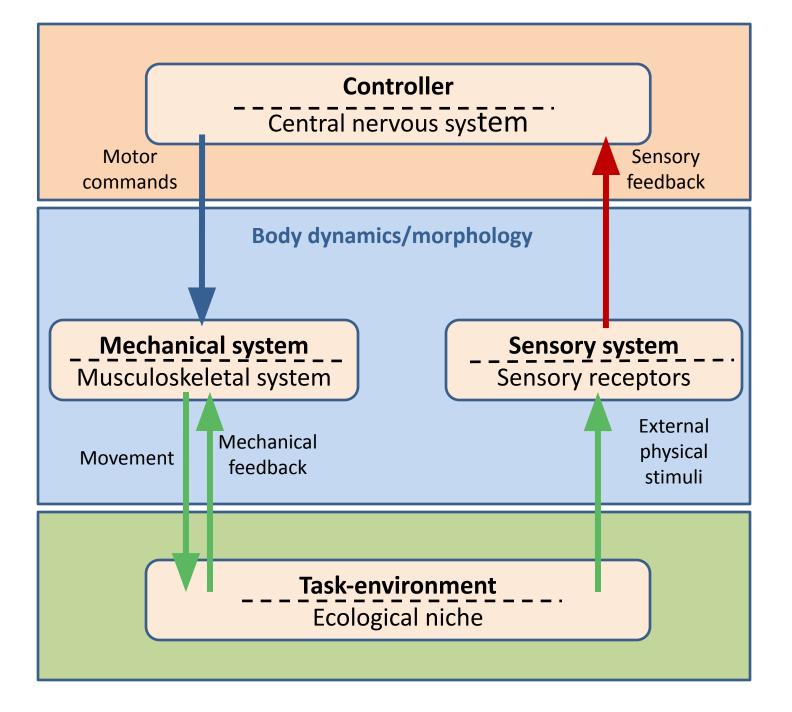
Beginnings


- early ideas of embodiment and modeling neurophysiological processes in the 1940s (McCulloch, Pitts 1946 formal neuron; Ross Ashby Homeostat; Grey Walter tortoise robots)
- 1946 1953 Macy Conferences on Cybernetics

William Grey Walter (1910-1977)

English neurophysiologist and roboticist Work on EEG, conditioning, etc. "Robotic tortoises" (1948-49)

- Autonomous robots with touch and light sensors
- Simple "brain" (2 "neurons")



- "tortoises" influenced a number of roboticists (Hans Moravec, Rodney Brooks, etc.)
- "descendants": robotic vacuum cleaners

Grey Walter's tortoises

https://youtu.be/ILULRImXkKo

Behavior-based robotics manifestos

Intelligence without representation*

Rodney A. Brooks

MIT Artificial Intelligence Laboratory, 545 Technology Square, Rm. 836, Cambridge, MA 02139, USA

Received September 1987

Brooks, R.A., Intelligence without representation, Artificial Intelligence 47 (1991), 139-159.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1293

April, 1991

Intelligence Without Reason

Rodney A. Brooks

Prepared for Computers and Thought, IJCAI-91

Outline

- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception
- Embodied AI

Our research examples and student projects

Insect eye morphology

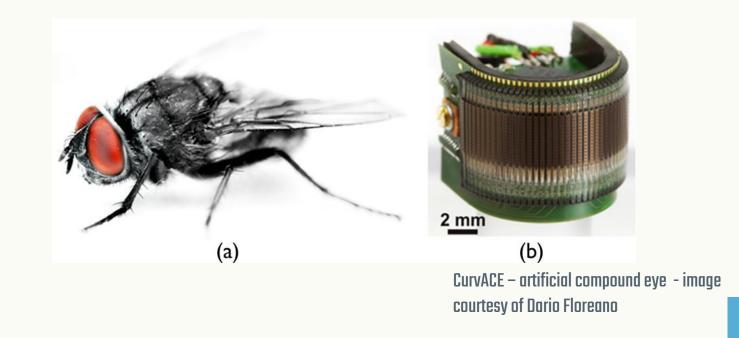
Different species of insects have evolved different non-homogeneous arrangements of the light-sensitive cells in their eyes, providing an advantageous nonlinear transformation of the input for a particular task

horsefly

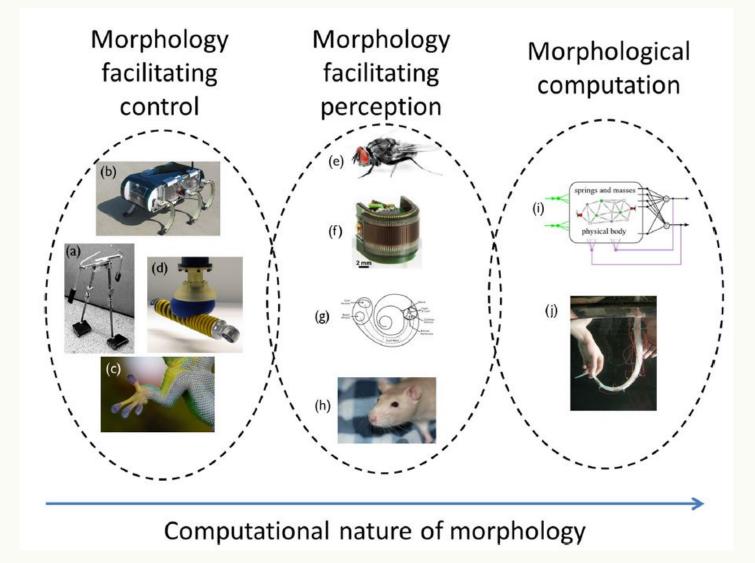
Obstacle avoidance

exploiting ego-motion together with motion parallax

Franceschini et al. 1992



$$\Omega = \frac{V_{\rm o}}{D} \cdot \sin\varphi$$


Figure 6. Principle of motion parallax. Any agent (fly, human, robot, etc.) translating at speed V_0 can gauge the distance to a contrast point P located at azimuth φ if it is equipped with a passive sensor able to measure the angular speed Ω of P when this point crosses its visual field due to the agent's own movement.

Nonuniform distribution & elementary motion detectors

The distribution of the cells is nonuniform and follows a sine gradient in the interommatidial angle, such that sampling of the visual space is finer towards the front than laterally. This effectively compensates for the sine relationship in the formula and allows uniform motion detection circuitry to be used everywhere.

Morphological "computation"

Müller, V.C. & Hoffmann, M. (2017), 'What is morphological computation? On how the body contributes to cognition and control', Artificial Life **23** (1), 1-24.

Embodiment behavior is not in the (or cell, molecule.

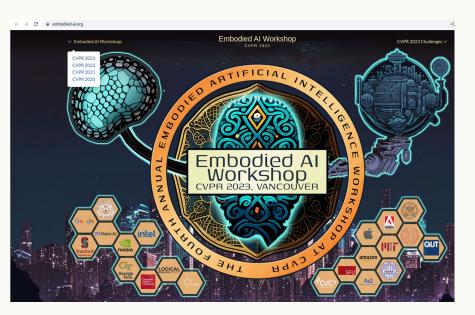


"all behavior is a result of brain function" Eric R. Kandel, Ch. 1: The Brain and Behavior, in Kandel, E.R., Schwartz, J.H. and Jessell, T.M. eds., 2000. Principles of neural science (Vol. 4, pp. 1227-1246)

it is in the interactior

Illustrations: Shun Iwasawa, from R. Pfeifer & J. Bongard: How the body shapes the way we think, 2007

Pfeifer, R., Lungarella, M., & lida, F. (2007). Self-organization, embodiment, and 42 biologically inspired robotics. science, 318(5853), 1088-1093.


Outline

- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

Embodied AI

Our research examples and student projects

"Embodied AI"- new trend in machine learning / deep learning

https://embodied-ai.org/

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., ... & Wu, J. (2022). Retrospectives on the embodied AI workshop.

https://iros2022.org/

~Embodied AI for a Symbiotic Society~

From Reinforcement Learning to Embodied Learning

2022-07-28: Sergey Levine, UC Berkeley, "From Reinforcement Learning to Embodied Learning".

at https://sites.google.com/view/developing-minds-series/home

What is this "Embodied

Retrospectives on the Embodied AI Workshop

Matt Deitke^{1,17}, Dhruv Batra^{5,8}, Yonatan Bisk³, Tommaso Campari^{4,16}, Angel X. Chang'¹³, Devendra Singh Chaplel⁸,
 Changan Chen¹⁹, Claudia Pérez-D'Arpino⁷, Kiana Ehsani¹, Ali Farhadi^{2,17}, Li Fei-Fei¹⁴, Anthony Francis⁶, Chuang Gan^{11,15},
 Kristen Grauman^{19,8}, David Hall²⁰, Winson Han¹, Unnat Jain⁸, Aniruddha Kembhavi^{1,17}, Jacob Krantz¹², Stefan Lee¹², Chengshu Li¹⁴,
 Sagnik Majumder¹⁰, Oleksandr Maksymets¹⁸, Roberto Martín⁴¹, Martín¹⁰, Rozzbeh Mottaghi^{8,17}, Sonia Raychaudhuri¹³,
 Mike Roberts⁷, Slivio Savarese¹⁴, Manolis Sava¹³, Mohit Shridhar¹⁷, Niko Sünderhauf²⁰, Andrew Szof⁵, Ben Talbot²⁰,
 Joshua B. Tenenbaum¹⁰, Jesse Thomason¹⁸, Alexander Toshev², Joanne Truong⁵, Luca Weihs¹, Jiajun Wu¹⁴
 ¹Allen Institute for Al, ²Apple, ³Camegie Mellon University, ¹⁶BK, ⁵Gcorgia Tech, ⁴Coogle, ⁷Intel Labs, ⁸Meta Al, ⁹NVIDIA, ¹⁰MIT,
 ¹¹MIT-IBM Watson AI Lab, ¹²Oregon State University, ¹³Simon Fraser University, ¹⁶Stanford University, ¹⁵UMass Amherst,
 ¹⁶University of Padova, ¹⁰University of Washington, ¹⁸University of Southern California, ¹⁰UT Austin, ²⁰OUT Centre for Robotics

Abstract

We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, coaluation metrics for the challenges, and the performance of stateof-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.

1. Introduction

Within the last decade, advances in deep learning, coupled with the creation of massive datasets and high-capacity models, have resulted in remarkable progress in computer vision, audio, NLP, and the broader field of AI. This progress has enabled models to obtain superfurman performance on a wide

of researchers and research challenges.

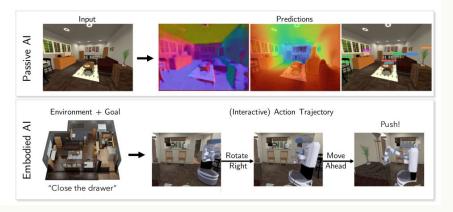
Consider asking a robot to 'Clean my room' or 'Drive me to my favorite restaurant'. To succeed at these tasks in the real world, the robots need skills like visual perception (to recognize scenes and objects), audio perception (to receive the speech spoken by the human), language understanding (to translate questions and instructions into actions), memory (to recall how items should be arranged or to recall previously encountered situations), physical intuition (to understand how to interact with other objects), multi-agent reasoning (to predict and interact with other agents), and navigation (to safely move through the environment). The study of embodied agents both provides a challenging testbed for building intelligent systems and tries to understand how intelligence emerges through interaction with an environment. As such, it involves many disciplines, such as computer vision, natural language processing, acoustic learning, reinforcement learning, developmental psychology, cognitive science, neuroscience, and robotics.

- rearrangement
- visual navigation
- vision-and-language
- audio-visual navigation
- sim-to-real transfer

cog		<
inbodied Al Workshops	Embodied Al Workshop	CVPR 2022 Challenges V
498,2023 498,2023 498,2023	TIFICIALIN	<u> </u>
		Calls
	Embodied AI	6 10
- NN	WORKShop CVPR 2023, VANCOUVER	
S and a second s		
	HI HANS	
tne://or	mbodied-ai or	

https://embodied-ai.org/

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., ... & Wu, J. (2022). Retrospectives on the embodied AI workshop.


Challenges

The Embodied AI 2023 workshop is hosting many exciting challenges covering a wide range of topics such as rearrangement, visual navigation, vision-and-language, and audio-visual navigation. More details regarding data, submission instructions, and timelines can be found on the individual challenge websites.

Challenge winners will be given the opportunity to present a talk at the workshop. Since many challenges can be grouped into similar tasks, we encourage participants to submit models to more than 1 challenge. The table below describes, compares, and links each challenge.

💪 Challenge	🗧 😭 Scene Dataset 🔅	Observations	Action Space 💠	Q Interactive Actions?	\$ Stochastic Acuation?	
Habitat	HM3D Semantics	RGB-D, Localization	Continuous			
Habitat	HM3D Semantics	RGB-D, Localization	Continuous			
RxR-Habitat (Coming Soon)	Matterport3D	RGB-D	Discrete			
MultiON	HM3D Semantics	RGB-D, Localization	Discrete			
SoundSpaces	Matterport3D	RGB-D, Audio Waveform	Discrete			
SoundSpaces	Matterport3D	RGB-D, Audio Waveform	Discrete			
Robotic Vision Scene Understanding	Active Scene Understanding	RGB-D, Pose Data, Flatscan Laser	Discrete		Partially	
Robotic Vision Scene Understanding	Active Scene Understanding	RGB-D, Pose Data, Flatscan Laser	Discrete		/	
TDW-Transport (Coming Soon)	TDW	RGB-D, Metadata	Discrete	~	/	
AI2-THOR Rearrangement (Coming Soon)	ithor	RGB-D, Localization	Discrete	/		
Language Interaction	ithor	RGB	Discrete	,		
DialFRED	ithor	RGB	Discrete	~		
ManiSkill	PartNet-Mobility, YCB, EGAD	RGB-D, Metadata	Continuous	~		

What is this "Embodied

https://embodied-ai.org/

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., ... & Wu, J. (2022). Retrospectives on the embodied AI workshop.

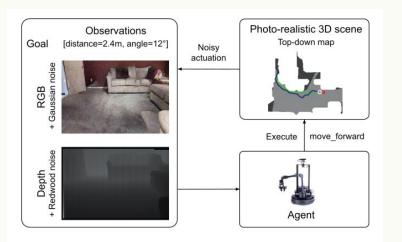


Figure 3. The *PointNav* task requires an agent to navigate to a goal coordinate in a novel environment (potentially with noisy sensory inputs), without access to a pre-built map of the environment.

(b)

Figure 6. *Multi-ObjectNav:* (a) Top-down visualization of a MultiON episode with 5 target cylinder objects in a particular sequence; (b) Top-down visualization of a MultiON episode with 5 target real objects in a particular sequence.

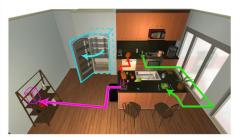
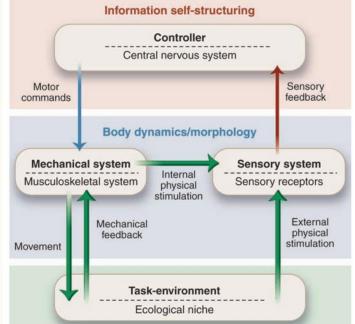


Figure 11. AI2-THOR Visual Room Rearrangement Challenge. An agent must change pose and attributes of objects in a household environment to restore the environment to an initial state.

What is this "Embodied A


https://embodied-ai.org/

- embodied AI ~ sim-to-real transfer
- embodied AI ~ multimodal inputs

My interpretation:

• The tasks are weakly

Challenges

The Embodied AI 2023 workshop is hosting many exciting challenges covering a wide range of topics such as rearrangement, visual navigation, vision-and-language, and audio-visual navigation. More details regarding data, submission instructions, and timelines can be found on the individual challenge websites.

Challenge winners will be given the opportunity to present a talk at the workshop. Since many challenges can be grouped into similar tasks, we encourage participants to submit models to more than 1 challenge. The table below describes, compares, and links each challenge.

💪 Challenge	😭 Scene Dataset 🔅	Observations \$	🛔 Action Space 👙	Interactive Actions?	Stochastic Acuation?
Habitat	HM3D Semantics	RGB-D, Localization	Continuous	\frown	
Habitat	HM3D Semantics	RGB-D, Localization	Continuous	/ \	
RxR-Habitat (Coming Soon)	Matterport3D	RGB-D	Discrete		
MultiON	HM3D Semantics	RGB-D, Localization	Discrete		
SoundSpaces	Matterport3D	RGB-D, Audio Waveform	Discrete		
SoundSpaces	Matterport3D	RGB-D, Audio Waveform	Discrete		
Robotic Vision Scene Understanding	Active Scene Understanding	RGB-D, Pose Data, Flatscan Laser	Discrete	\setminus /	Partially
Robotic Vision Scene Understanding	Active Scene Understanding	RGB-D, Pose Data, Flatscan Laser	Discrete	\bigcirc	1
TDW-Transport (Coming Soon)	TDW	RGB-D, Metadata	Discrete	2	1
AI2-THOR Rearrangement (Coming Soon)	ithor	RGB-D, Localization	Discrete	1	
Language Interaction	ithor	RGB	Discrete	,	
DialFRED	ITHOR	RGB	Discrete	~	
ManiSkill	PartNet-Mobility, YCB, EGAD	RGB-D, Metadata	Continuous	1	

What are the limits of generalization?

- across tasks, environments...
- across bodies?
- My take:
 - how much can a giraffe brain profit from a crocodile's brain?
 - only in very weakly embodied tasks....

DeepMind

2022-5-19

A Generalist Agent

Scott Reed^{*,4}, Konrad Żołna^{*}, Emilio Parisotto^{*}, Sergio Gómez Colmenarejo[†], Alexander Novikov, Gabriel Barth-Maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar and Nando de Freitas[†]

 * Equal contributions, † Equal senior contributions, All authors are affiliated with DeepMind

Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato.

Figure 1 | A generalist agent. Gato can sense and act with different embodiments across a wide range of environments using a single neural network with the same set of weights. Gato was trained on 604 distinct tasks with varying modalities, observations and action specifications.

Summary

- Embodied AI within deep learning

- giving deep learning architectures the body and closing the loop (wit Controller Central nervous sy reservations)
- weak embodiment
- What is not exploited:
 - morphology for control
 - morphology for perception
 - information self-structuring

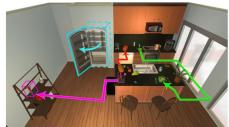
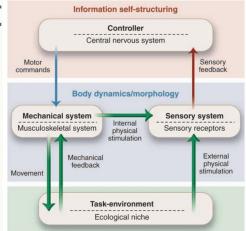
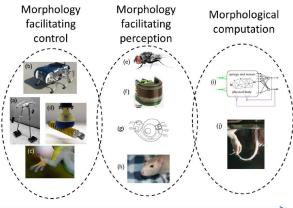




Figure 11. **AI2-THOR Visual Room Rearrangement Challenge.** An agent must change pose and attributes of objects in a household environment to restore the environment to an initial state.

vers us

Resources and further reading

- Pfeifer, R. & Scheier, C. (2001), Understanding intelligence, MIT Press Cambridge, MA, USA.
- Pfeifer, R. & Bongard, J. C. (2007), How the body shapes the way we think: a new view of intelligence, MIT Press, Cambridge, MA.
- Cangelosi, A., & Schlesinger, M. (2015). *Developmental robotics: From babies to robots*. MIT press.
- ShanghAI lectures repository: <u>http://shanghailectures.org/lectures</u>
- Hoffmann, M. & Pfeifer, R. (2011), The implications of embodiment for behavior and cognition: animal and robotic case studies, in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-58.
- Müller, V. C., & Hoffmann, M. (2017). What is morphological computation? On how the body contributes to cognition and control. *Artificial life*, 23(1), 1-24.
- Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., ... & Wu, J. (2022). Retrospectives on the embodied AI workshop.
- Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., ... & de Freitas, N. (2022). A generalist agent. arXiv preprint arXiv:2205.06175.

how the body shapes the way we think a new view of intelligence

Outline

- Synthetic methodology ~ "understanding by building"
- Classical AI intelligence as computation
- Embodied intelligence
 - Morphology facilitating control
 - Body design simplifying task
 - Behavior emergent from simple sensory-motor loops
 - Morphology facilitating perception

Embodied AI

Our research examples and student projects

Humanoid and cognitive robotics

Humanoid and cognitive robotics

Coordinator

Matej Hoffmann origin: Czechia PhD: Zurich, Switzerland (Rolf Pfeifer) postdoc: IIT, Genoa, Italy

Sergiu Tcaci Popescu origin: Moldova, France PhD: Cognitive Science, Paris, France postdoc: sensorimotor contingencies (Kevin O'Regan) sensorimotor contingencies, tactile localization, body schema development, self-touch

Valentin Marcel origin: France PhD: Robotics, Paris, France formal approaches to sensorimotor development, machine learning, embodied comp. models

Zdeněk Straka origin: Czechia BSc: Cybernetics and Robotics @ FEE, CTU MSc: AI @ FEE, CTU machine learning, neural networks, peripersonal space representations

Petr Švarný origin: Czechia MSc: logic, business informatics PhD: logic, Prague physical human-robot

Portugal MSc.: AI & robotics @ Cergy-Pontoise active exploration,

Filipe Gama Shubhan Patni origin: France, origin: India MSc.: Robotics @ Bristol, UK haptic exploration, grasping

Jason Khoury origin: France MSc: psychology, game design @ Lyon, Montpellier Robotics @ FEE, tactile localization, body schema

Lukáš Rustler origin: Czechia MSc.: Cybernetics and Robotics @ FEE, CTU visuo-haptic-F exploration, physical HRI,

Postdocs

Humanoids

Naos (1 with "iCub skin")

Collaborative robots

KUKA LBR iiwa

Kinova Gen3

Large-scale robot skin

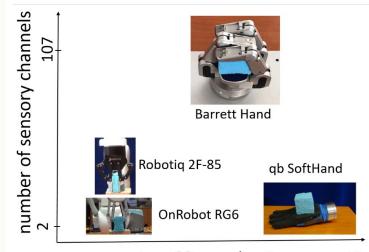
iCub humanoid ~ 4000 taxels

Nao humanoid retrofitted with "iCub skin" – 970 taxels

UR 10

manipulator with

Airskin



Robot hands and grippers

Anthropomorphic hands

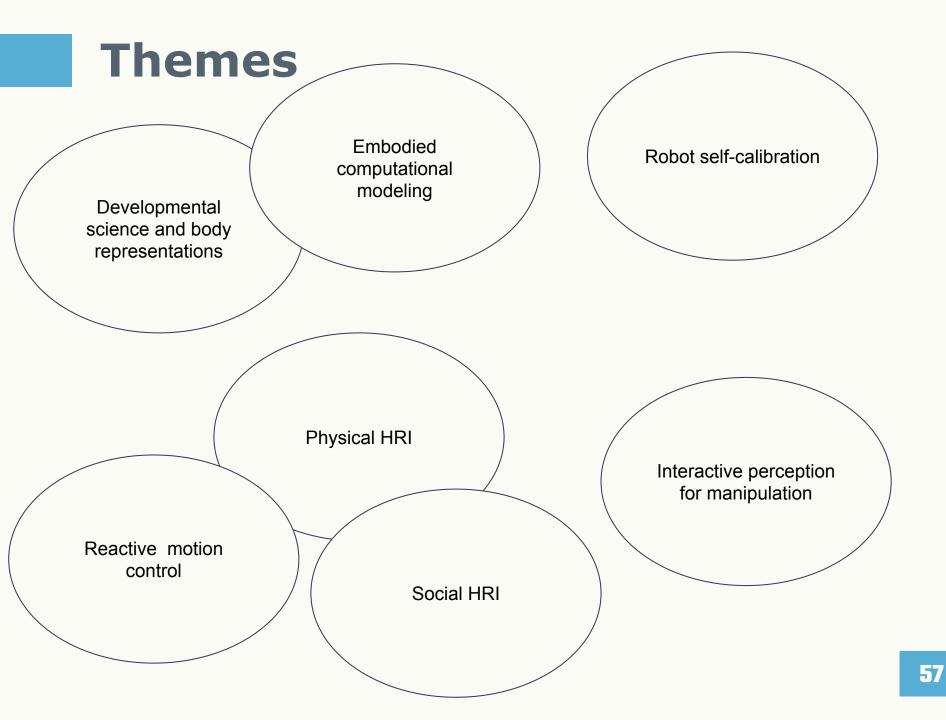
Barrett Hand (96 tactile + 3 fingertip joint torque + 8 joint pos. sensors)

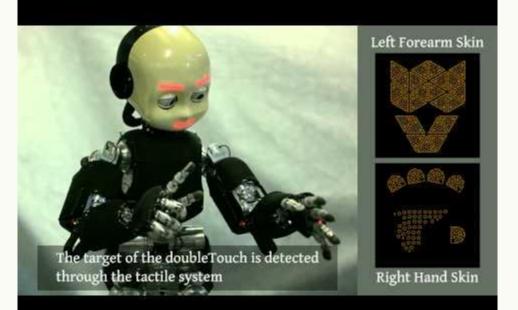
number of fingers / anthropomorphism

Qb SoftHand (1 motor with position and current sensor)

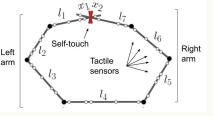
YCB object and model set

iCub hand

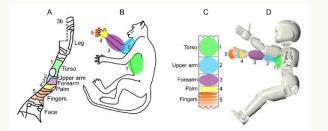


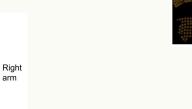

deformable objects set

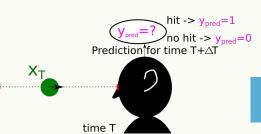
robots as embodied computational models of child and brain development



autonomous, adaptive, resilient, and self-calibrating robots

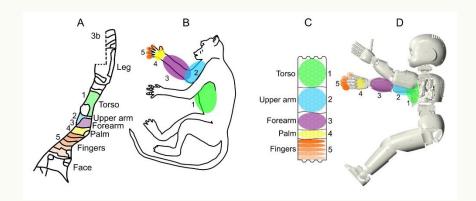

Robot case studies and neural network models


- 1. iCub tactile homunculus (SOM)
- 2. Learning to predict touch from proprioception (UBAL)
- 3. From self-touch to reaching to the body (VAE)

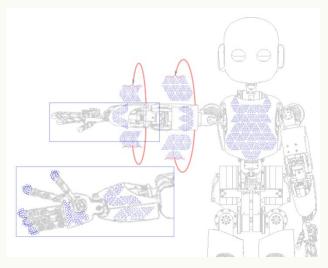


- 5. Learning to reach (deep NN)
- 6. Models of peripersonal space

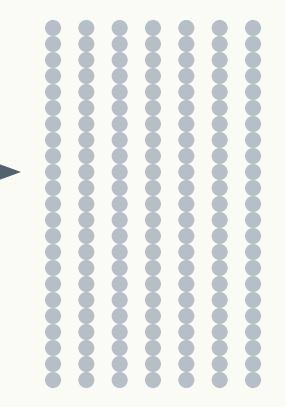



59

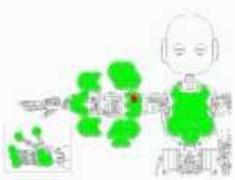
"Somatosensory homunculus"



(A) Penfield W., Rasmussen T.: The cerebral cortex of man; a clinical study of localization of function, 1950. (pic from OpenStax College)
 (B,C) Organization of the representations of body surface in area 3b of the cynomolgus macaque. (after Nelson 1980)


Learning using Self-Organizing (Kohonen) map (SOM)

input layer: 1154 taxels


Output layer: 7 x 24 neurons

The topology is learned from co-activations of neighboring taxels when the skin is stimulated by a human.

Hoffmann, M.; Straka, Z.; Farkas, I.; Vavrecka, M. & Metta, G. (2018), 'Robotic homunculus: Learning of artificial skin representation in a humanoid robot motivated by primary somatosensory cortex', *IEEE Transactions on Cognitive and Developmental Systems* **10**(2), 163-176.

Active exploration of "skin space"

Random Motor Babbling

Discretized Goal Babbling

Path-Based Continuous Goal Babbling

63

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2021), 'Goal-directed tactile exploration for body model learning through self-touch on a humanoid robot', *IEEE Transactions on Cognitive and Developmental Systems*.

Motion retargeting – babies to humanoids

Input RGB Image

MMpose (HRNet) / Alphapose / Detectron2 / OpenPose / Deep(er)Cut


 $SMIL \longrightarrow Smplify-x$

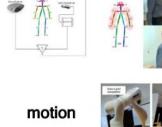
iCub playing "Bubbles"

Rozlivek, Roncone, Pattacini & Hoffmann (2023) - in preparation

Humanoid and collaborative robots

robots with artificial skin

co-bots and safe HRI



Data validati normalization &

analysis

SMIL Projecti

capture to robot

Student projects: Internship (e.g., summer) Project / Bc. / MSc. thesis

Mgr. Matěj Hoffmann, Ph.D. https://sites.google.com/site/matejhof/student-projects

matej.hoffmann@fel.cvut.cz

FACULTY OF ELECTRICAL ENGINEERING Department of Cybernetics

https://sites.google.com/site/matejhof/student-proj ects/open-and-ongoing

check also

https://sites.google.com/site/matejhof/student-proj ects/past-projects

Témata semestrálních projektů

Vyhledat 🕚						Přihlá	sit s	5e	
Vyhledat							Oblibené projekty		
Typ studia					10	Můj projekt			
O Bakalářské 💿 Magisterské									
Studijní program									
Nevybráno 🛛 🗸 🗸									
Katedra vedoucího		Vedoucí							
(13133) Katedra kybernetiky	x ~	doc. Mgr. M	~						
Kategorie témat									
Nevybráno					(~)				
Počet nalezených témat: 6									
Název tématu 🗢	Vedoucí 🖨		Určeno pro 🖨	Obsazenost	Katedra vedoucího 🗢				
 Řízení hlavy a očí humanoidního robota pro interakci s člověkem 	<u>doc. Mgr. Matěj Hoffmann,</u> <u>Ph.D.</u>		BS & MS	0/2	(13133) Katedra kyberni	<u>etiky</u>		8	
Měření a modelování sil při kolizi s robotem	doc. Mgr. Matěj Hoffmann, Ph.D.		BS & MS	0/1	(13133) Katedra kyberne	<u>etiky</u>		8	
 Získání kinematiky pohybu z videí dětí 	<u>doc. Mgr. Matěj Hoffmann,</u> <u>Ph.D.</u>		BS & MS	0/2	(13133) Katedra kyberni	<u>etiky</u>	☆	8	
> Real-time mapování dat z motion capture systému do pohybů robota	doc. Mgr. Matěj Hoffmann, Ph.D.		BS & MS	0/1	(13133) Katedra kyberne	etiky	☆	8	
 Transformace pohybových dat dítěte na humanoidního robota 	<u>doc. Mgr. Matěj Hoffmann,</u> <u>Ph.D.</u>		BS & MS	0/1	(13133) Katedra kyberni	<u>etiky</u>	☆	8	
> Doplnění vnímání průchodnosti LIDARu dotykem	doc. Mgr. Matěj Hoffmann, Ph.D.		BS & MS	0/1	(13133) Katedra kyberne	etiky	습	ø	

https://intranet.fel.cvut.cz/cz/education/semes tralni-projekty.html?t=&o=&k=&s=hoffmann-m atej&type=MS&dept=11&supervisor=hoffmm at#form

How to apply: send email to Matej Hoffmann, with:

- projects you would be interested in
- type: internship / Bc./MSc. project / • internship
- CV
- your study grades from your studies