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Manipulation

e “Prehensile manipulation” - grasping. (CZ: prehensile ~ “chapavy”)
e “Nonprehensile manipulation” - everything else you can do with your hands

(manus in latin)
pushing
rolling
throwing
catching
tapping

etc.
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Grand Challenge: “The ability to grasp
arbitrary objects...would

have significant impact in
factories, warehouses,

and homes.”
ROD BROOKS, FEBRUARY 2017

Slide taken from Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk



https://youtu.be/ATDrSWZXuwk

Universal picking challenge

e g

Universal
Picking:

diversely
shaped
and sized
objects

Pictures from Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk 5
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Contact joints

FIGURE 2.11 Closed loops are formed via contact joints at the feet and hands. Contact coordinate frames {k}, k €
{er,er}, e € {H, F} are fixed at the center of pressure (CoP) to the common loop-closure link (floor F and rod H). The
z-axes at the feet (shown in blue color) point in a way s.t. the reaction force at the contact is always nonnegative. The
contact constraints in the vertical direction at the feet are unilateral while those in the angular tangential directions
are bilateral, with bounds. All contact constraints at the hands are bilateral.

Section 2.9 in Nencheyv, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.




Contact joints

2.9.3 Kinematic Models of Frictionless Contact Joints

Denote by V™ € 9" the first-order instantaneous motion components along the uncon-
strained-motion directions at contact joint k. These components determine the contact joint
twist, i.e.

Vi =B, VM. (2.62)

Here ¥B,, € %% is a transform that comprises orthonormal basis vectors for the twist com-
onents in the unconstrained motion directions.” There is a complementary transform s.t.
m ®FB, = E¢ (® denotes the direct sum operator):

Vi =*B.VE. (2.63)

Here V¢ comprises first-order instantaneous motion components in the constrained motion
directions. In the above notations (and throughout this text), the overbar notation signifies a
restricted quantity, i.e.

VI = NCEB) Ve =B Vi, (2.64)
V¢ = NCBp)Ve="B V. (2.65)
These relations imply that
T;kc k]BT _ _
[T}km} - [kB'% Ve, VELVM (2.66)

In the example in Fig. 2.11, the frictionless cylindrical contact joints at the hands determine

Hp, =

(=R -
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y V= [”’]. (2.68)
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The frictionless plane-contact joints at the feet, on the other hand, are modeled with

FiB,, =
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,Yi;;_': vy |- (2.69)
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Section 2.9 in Nencheyv, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.



Outline

1. Contact kinematics
a. Formclosure

2. Contact forces and friction
a. Forceclosure

Grasp quality metrics
4. Sampling-based and data-driven grasp planning
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First Wave:
Analytic Methods

REAULEAUX, 1876 NGUYEN, 1988
HANAFUSA & ASADA, 1977 FERRARI & CANNY, 1992
Ll & SASTRY, 1988 BICCHI, 1994

Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk

R(x,u) € {0, 1}

u*=n(x) = argmax R(X, u)

SHIMOGA, 1996 KRUGER ET AL., 2012
BICCHI & KUMAR, 2001 POKORNY ET AL., 2013
ROA & SUAREZ, 2006 HAAS-HEGER ET AL., 2006



https://youtu.be/ATDrSWZXuwk

Contact kinematics

e study of how two or more rigid bodies can move relative to each other while
respecting the impenetrability constraint.

e motion at acontact
o breaking
o sliding
o rolling (sticking)

10



Analysis of single contact

Consider two rigid bodies whose configurations are given by the local coordinate
column vectors ¢; and ¢o, respectively. Writing the composite configuration as
q = (q1,92), we define a distance function d(q) between the bodies that is
positive when they are separated, zero when they are touching, and negative
when they are in penetration. When d(g) > 0, there are no constraints on the
motions of the bodies; each is free to move with six degrees of freedom. When
the bodies are in contact (d(q) = 0), we look at the time derivatives d, d, etc.,
to determine whether the bodies stay in contact or break apart as they follow
a particular trajectory ¢(t). This can be determined by the following table of

contact
tangent plane

possibilities:
A . ycontact
n
d d i normal
Figure 12.2: (Left) The bodies A and B in single-point contact define a contact
>0 no contact tangent plane and a contact normal vector n perpendicular to the tangent plane. By
. . A default, the positive direction of the normal is chosen into body A. Since contact
< 0 lnfCaSIble (Penetratlon) curvature is not addressed in this chapter, the contact places the same restrictions on
p— >0 in contact. but breaking free the motions of the rigid bodies in the middle and right panels.
b
= <0 infeasible (penetration)
= =0 >0 in contact, but breaking free
=0 =0 <0 infeasible (penetration)
etc.

The contact is maintained only if all time derivatives are zero.

12.1.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/ 11



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/

First-order analysis

Now let’s assume that the two bodies are initially in contact (d = 0) at a
single point. The first two time derivatives of d are written

. 0d
i— S 12.1
g% (12.1)
(12.2)

The terms dd/dq and 9%d/dq?* carry information about the local contact geom-
etry. The gradient vector dd/dq corresponds to the separation direction in ¢
space associated with the contact normal (Figure 12.2). The matrix §?d/dq>
encodes information about the relative curvature of the bodies at the contact
point.

12.1.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.

contact
tangent plane

A

contact
normal

Figure 12.2: (Left) The bodies A and B in single-point contact define a contact
tangent plane and a contact normal vector 7 perpendicular to the tangent plane. By
default, the positive direction of the normal is chosen into body A. Since contact
curvature is not addressed in this chapter, the contact places the same restrictions on
the motions of the rigid bodies in the middle and right panels.

equivalent motion constraints by a
first-order analysis

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-1-first-order-analysis-of-a-single-contact/ 12
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= VA t+twWa XPAa

VB +wWB X PB

12.1.2in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

13


https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

first-order rolling (~ sticking) contact

impenetrability constraint

n' (pa —pg) =0 a-b = [a]l |[b]l cos,

12.1.2in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

14
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Contact types

X4, Xg € SE(2)

Relative
twist
VA L VB :
Vo

(%

penetrating

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-2-contact-types-rolling-sliding-and-breaking

15
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Form closure

e if asetof stationary constraints prevents all motion of the body.
e i.e.theonlytwististhe zero twist.

. 2+
Y RAE
o T |\ T
() (b)

(c) (d) (e) (f)

1st order " " " " "
analysis
Form closure
2nd order
. 4 x x X V4
analysis v/ v/

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

16



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

e |fanobjectisinform closure by first-order analysis, then it is also in form

closure by a higher-order analysis.
e If afirst-order analysis concludes only sliding and rolling contacts (no breaking),

a higher-order analysis may conclude form closure.

higher-order form closure

Higher-order form closure is
possible with as few as 2 contacts.

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

17



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

Form closure

e Form-closure requires:
e Atleast 4 point contacts for a planar body.
e Atleast 7 point contacts for a spatial body.

Question: are we grasping like that?

Grasping vs. design of fixtures.

12.1.7 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-1-7-form-closure

18
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u: friction coefficient

"}_\W/_ m;g ;5 A

."7 4
VAV AV VAV AV VAV AV VAV VAN ANd — AV o Vv VAV Ay AV a4y 4V 4V 4V 4V 4V 4V 4V 4y 4
D

This model is reasonable for hard, dry, materials.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

Friction cone

For a contact normal in the +2-direction, the set of forces that can be trans-
mitted through the contact satisfies

VIZ+TE<uh,  f20 (12.16)

5
B

N>

e What happens to the friction

cone if

o | pressharder?
o Thefriction coefficient changes?

12.2.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/ 20



https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/

Wrench cone

e Notonly forces but also
moments/torques can be
transmitted through contacts
with friction.

e Note that every contact
provides more than 1 force
“basis” vector.

h fa ¥ fs fa composite
- - wrench cone £,
(=

12.2.1 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-1-friction/ 21
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Force closure

e Agraspis force closure
o If for any external wrench there exist contact wrenches that cancel it.
o The composite wrench cone contains the entire wrench space, so that any external wrench on
the body can be balanced by contact forces.

e Intuition

o Form closure - object completely immobilized statically/geometrically (no forces applied).
o Forceclosure - someone is trying to take the object out of my hand but | can resist any such force
or rotation by pushing firmly through my fingers at the appropriate contact locations.

12.2.3 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure/

22
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Force closure

]
external ‘l
wrench |

I
|

external
wrench

resisting wrench

e What has changed?

o  (new contact points)
o friction coefficient increased!

e Now: any wrench can be generated -> force closure.

https://modernrobotics.northwestern.edu/nu-gm-book-resource/12-2-3-force-closure 23
e
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Intuitions - summary - form vs. force closure

With form closure, the contacts were acting (preventing object’s motion) only along
the normal. With friction, we get leverage in the orthogonal direction!

Friction always requires contact forces (pushing)!

Friction forces only counteract/resist other forces. That is actually very handy here -
resist wrenches that want to take the object away from the grasp...

Each contact is not a single basis like in form closure but through the friction/wrench
cone actually a set...

24



Form and force closure summary

Friction-less force closure ~ first-order form closure.
Form closure requires:

e Atleast 4 point contacts for a planar body.
e Atleast 7 point contacts for a spatial body.

Force closure with friction possible with as few as:

e 2 contacts for a planar body.

e 3contacts for a spatial body.
o 2softfingers - yes!

25



Now, how do we choose a grasp?

Prerequisite: evaluate alternative
grasps (grasp proposals).

Grasp quality measure.
Grasp wrench space - “minimum ball’”.

(employed in Grasplt! simulator)

Fig. 5 Qualitative 2-dimensional example of the grasp quality using 3
fingers and a a limit in the module of each force; b a limit in the sum

of the modules of the applied forces

Prattichizzo, D., & Trinkle, J. C. (2016). Grasping. In Springer handbook of robotics (pp. 955-988). Springer, Cham.




Table 2 Grasp quality measures

‘ r a S p Group Subgroup Quality index Criterion

Measures related to Based on algebraic Minimum singular value of G Maximize

the position of the properties of G
contact points on

o
quali et
Volume of the ellipsoid in the wrench space Maximize

Grasp isotropy index Maximize
m e a S u re S Based on geometric Shape of the grasp polygon® Minimize
relations
Area of the grasp polygon Maximize
Distance between the centroid C and Minimize
the center of mass CM
Orthogonality Minimize
Margin of uncertainty in finger positions® Maximize
Based on independent contact regions Maximize
Considering Largest-minimum resisted wrench Maximize
limitations on the
finger forces
Volume of the Grasp Wrench Space Maximize
Decoupled forces and torques Maximize
Normal components of the contact forces Minimize
Coplanarity of the normals* Minimize
Task oriented measures Maximize
Measures related to Distance to singular configurations Maximize
hand configuration
Volume of the manipulability ellipsoid Maximize
Uniformity of transformation Minimize
Finger joint positions Minimize
Similar flexion values Minimize
Task compatibility index Maximize
, . Safety margin Maximize
Roa, M. A., & Suarez, R. (2015). Grasp quality
. . Other measures Biomechanical fatigue Minimize
measures: review and performance. g gocci
Deviation in object pose Minimize

Autonomous robots, 38(1), 65-88.

# Applicable only to 2D and 3D planar grasps
b Applicable only to 2D grasps 27



Sampling based grasp planning revisited

« Sampling approach
— Choose candidate contacts.
— Evaluate resulting grasp.

* Instead of choosing contact locations, sample location to
place preshaped hand, and simulate where contacts
happen after closing fingers.

— Preshapes for prototypical grasps, e.g. pinch grasp, power
grasp, cylindrical grasp.

— Miller et al. 2003. .»' J
PR ‘, , ‘
Engineering

Slide from Ville Kyrki, Aalto University. Course: Robotic manipulation. Lectures 8: Friction and grasping.
https://mycourses.aalto.fi/course/view.php?id=32938&section=1

28
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Grasplt! - Overview

http://graspit-simulator.github.io
o Miller,A. T.. & Allen, P. K. (2004). Graspit: A versatile

simulator for robotic grasping. IEEE Robotics and
Automation Magazine.
Used for long time
o For example as generator of labeled grasps
Supports different hands or robots
o Users can define their own
Supports obstacles
o Importable as meshes
Supports materials
o Different coefficients of friction

Dynamic simulation can be enabled
o Bullet

sp_Database Sensors Stereo Misc. Help

2
3
2l

File Element Grasp He
ﬂimdsm lactive force(n): [0~ = passive force ()

e A @ES Ele |

29


http://graspit-simulator.github.io
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/

Grasplt' - How it works

Contact between object and gripper is detected (a)
o Using collision detection based on trees of bounding boxes

e Joint angle which caused the collision is found and the movement is reverted
before collision (b)
e Geometry of the contact is found and friction cones are created (c)

“ “
(@) (b) (©)

30



Grasplt! - Friction cones

e Coulomb friction model
o Force applicable at the contact is in the friction cone
e Frictioncone (a)
o Apexinthe contact point
o  Axis along the normal force f |
o Halfangle ¢qn=1y
m M isthe friction coefficient

e During grasp analysis, the cone is

approximated with an m side pyramid (b)
o fisconvex combination of m vectors

(a)

tan'n

31




GrasplIt! - Grasp Wrech Space

w = | Fis
e Wrenches "/ Adi < f; )
o fmone of mforces from the cone at contact pointi
o d@.vector from the torque origin
o )\ force to torque multiplicator
e GWS - space of wrenches applicable to the object given limit on normal force
o Computed as convex hull of wrenches
® W, =ConvexHull U('wiﬂ" e, W)
o Usedin Grasplt!
® W, = ConvexHull (é(wi,j ..... wi,m))

=1
o Minkowskisum

e For 3D object the GWS is 6D -> three coordinates need to be fixed for
visualization

32



Grasplt! - Metrics

e Taskwrench space

o Space of wrenches which needs to be applied to carry out the given task

m 6D ball when we assume that disturbances can come from any direction

e 1) Epsilon-quality

o Radius of the biggest 6D ball in the torque origin which can fit into unit GWS
o Thecloserto 1, the better quality
)
O

e 2)Volumeof W,
The bigger, the better

33



Grasplt! - Simulated Annealing
e Usedto find global extrema

Randomly computes a neighbor of current states and probabilistically decides if
to change state or not

e Use parameter “Temperature T”

o Decreasesintime

o IfT=0,itis basic hill climbing algorithm
®

Used in Grasplt! to sample possible grasps

f
— ¢ PAN
lemperature: 25.0 ) !
A" LA
N Jlll\ ,'-1 ahe | |'||‘. 7 W b"’ql A
VAR A W ¥
1% ¥ \l i 1 ! lljl ll' & |"I “f
\ 3! l1 # | / I f W ]l |
fl.{,' J,t‘ \"ﬁ l' S N Ly s
IPJ | fl ll. ,r M l’l' : '\»"J"\‘x I"' Il Ry
ll i [l. i‘x d ll |’| i !Ui
ly AN It
|I |l
¥
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Grasplt! - Eigengrasps

Ciocarlie et al. ,2007. Dimensionality reduction for hand-independent dexterous robotic grasping. IEEE

International Conference on Intelligent Robots and Systems.

e Reduction of DOF of hands

o Based onresults from robotics and neuroscience

m  Majority of grasps lacks individual finger movements
e For example, human hand needs only 2 eigengrasps

Thumb rotation

Thumb flexion
Human 20 MCP flexion

Index abduction

W.»

Thumb flexion
MCP extension
PIP flexion

Barrett 4 Spread angle opening

b

Finger flexion

35



https://ieeexplore.ieee.org/abstract/document/4399227
https://ieeexplore.ieee.org/abstract/document/4399227

Grasplt! - Interface

e ROS interface https://github.com/graspit-simulator/graspit interface
o Publishes topics and services based on Grasplt! API

e Python client https://github.com/graspit-simulator/graspit commander
o Access the services with Python
o  Minimal knowledge of ROS needed
m  Onlydatatypes - Point, Quaternion, etc.

In [ ]: from graspit commander import GraspitCommander

In [ ]: GraspitCommander.clearWorld()
GraspitCommander.importRobot("BarrettBH8 280")
GraspitCommander.importGraspableBody("my object.ply")
plan = GraspitCommander.planGrasps(max steps=70000)

36


https://github.com/graspit-simulator/graspit_interface
https://github.com/graspit-simulator/graspit_commander

Problems in practice?

On the side of object:

shape estimation uncertainty

pose estimation uncertainty

friction estimation uncertainty

rigidity assumption

highly simplified contact model vs. reality

On gripper side:

e kinematic constraints

Plus:

e planned vs. actual placement of gripper jaws
/ fingers
e task compatibility




First Wave:
Analytic Methods

REAULEAUX, 1876 NGUYEN, 1988
HANAFUSA & ASADA, 1977 FERRARI & CANNY, 1992
Ll & SASTRY, 1988 BICCHI, 1994

Ken Goldberg - The New Wave in Robot Grasping:

R(x,u) € {0, 1}

u*=n(x) = argmax R(X, u)

SHIMOGA, 1996 KRUGER ET AL., 2012
BICCHI & KUMAR, 2001 POKORNY ET AL., 2013
ROA & SUAREZ, 2006 HAAS-HEGER ET AL., 2006

https://voutu.be/ATDrSWZXuwk
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Grasping as a learning problem

e ~ Data-driven grasping.
e Train aneural network to do the grasp evaluation.

Aligned Image /7| /7 Orasp Quality CNN

Grasp Candidate
- —
y ReLU Rell ReLl RelU ReLU
LRN LRN
& _/ _/ _/ RelU So fiMx Q 9
Gripper Depth |/ LV -
Conv 7x7 Conv 5x5 Max Pool Conv 3x3 Canv 33 Fully Camected
- 64 Fikers 64 Filsers 2x2 64 Fikers 64 Filsers 1024 Oupuss
”5 ~
| | I'.ll[\‘;\x:od
2 Outputs
| I Rell
—
Fully Comnected Fully Conmnected
16 Outpants 1024 Oupuns

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics. 39




DeX— Net https://voutu.be/r-OPKne9e w

Dex-Net 4.0:

Learning Ambidextrous Robot Grasping Policies

Science Robotics Journal 2019
berkeleyautomation.github.io/dex-net

e Overview in a talk: Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk

e Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.

e Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., & Goldberg, K. (2019). Learning
ambidextrous robot grasping policies. Science Robotics, 4(26), eaau4984.

40


https://youtu.be/ATDrSWZXuwk
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Dex-Net 2.0

Initial State Dex-Net 2.0 Executed Grasp
=% =20 MaUEE
- s NOnEm
«94) NOOE™
Grasp ¢ Trained Model of
Iopisk Depth Traage Candidates Grasp Robustess

Most
Robust

Grasp

GQ-CNN

Fig. 1: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness
candidate grasps from depth images using a dataset of 6.7 million synthetic
point clouds, grasps, and associated robust grasp metrics computed with Dex-
Net 1.0. (Left) When an object is presented to the robot, a depth camera
returns a 3D point cloud, where pairs of antipodal points identify a set of
several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

Fig. 2: Graphical model for robust parallel-jaw grasping of objects on a table
surface based on point clouds. Blue nodes are variables included in the state
representation. Object shapes O are uniformly distributed over a discrete set of
object models and object poses T, are distributed over the object’s stable poses
and a bounded region of a planar surface. Grasps u = (p, ) are sampled
uniformly from the object surface using antipodality constraints. Given the
coefficient of friction 4 we evaluate an analytic success metric S for a grasp
on an object. A synthetic 2.5D point cloud y is generated from 3D meshes
based on the camera pose T, object shape, and pose and corrupted with
multiplicative and Gaussian Process noise.

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics. a1



Dex-Net 2.0

3D Object Meshes Robust Parallel-Jaw Grasps Grasp mge Dataset (6.7 Million)

ey

- Rendered Depth Images

Negative

HEY
"End

.

it
lZ}!
Y~

Fig. 3: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D object mesh models. (Top) For each object, we sample
hundreds of parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom) We also render point clouds of each object in each
stable pose, with the planar object pose and camera pose sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location
and orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align the grasp pixel location with the image center
and the grasp axis with the middle row of the image, creating a 32 x 32 grasp image. The full dataset contains over 6.7 million grasp images.

Mahler, J., Liang, J., Niyaz, S., Aubry, M., Laskey, M., Doan, R., ... & Goldberg, K. (2018). Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.




ex-Net 4.0
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Camera
Vacuum
Generator
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Gripper

Fig. 2. Physical benchmark for evaluating UP policies. (Top) The robot plans a
grasp to iteratively transport each object from the picking bin (green) to a receptacle
(blue) using either a suction-cup or a parallel-jaw gripper. Grasp planning is based on
3D point clouds from an overhead Photoneo PhoXi S industrial depth camera.
(Bottom) Performance is evaluated on two datasets of novel test objects not used
in training. (Left-Bottom) Level 1 objects consist of prismatic and circular solids (eg,,
boxes and cylinders) spanning groceries, toys, and medicine. (Right-Bottom) Level 2
objects are more challenging, including common objects with clear plastic and varied
geometry, such as products with cardboard blisterpack packaging.

Fig. 1. Learning ambidextrous grasping policies for UP. (Top) Synthetic training
datasets of depth images, grasps, and rewards are generated from a set of 3D c iter-

Gripper
Model

Grasp Action Analytic Reward

T T
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i
i Synthetic Dataset Generation
]
|

Parallel-Jaw Dataset

Suction Dataset

A 2

v

aided design (CAD) models using analytic models based on physics and domain ran-
domization. Specifically, a data collection policy proposes actions given a simulated
heap of objects, and the synthetic training environment evaluates rewards. Reward is
computed consistently across grippers by considering the ability of a grasp to resista
given wrench (force and torque) based on the grasp wrench space, or the set of
wrenches that the grasp can resist through contact. (Middle) For each gripper, a policy
is trained by optimizing a deep GQ-CNN to predict the probability of grasp success
given a point cloud over a large training dataset containing millions of synthetic
examples from the training environment. Data points are labeled as successes (blue)
or failures (red) according to the analytic reward metric. (Bottom) The ambidextrous
policy is deployed on the real robot to select a gripper by maximizing grasp quality
using a separate GQ-CNN for each gripper.

Mabhler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B.,
McKinley, S., & Goldberg, K. (2019). Learning ambidextrous
robot grasping policies. Science Robotics, 4(26), eaau4984.

Parallel-Jaw GQ-CNN

A

Suction GQ-CNN

J

Policy Learning

Depth Image

Grasp Action

Robot Execution
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GPD - Overview

e https://github.com/atenpas/gpd | Y (D Sil filill/iotall: a5t
o tenPasetal., 2017. Grasp Pose ‘
Detection in Point Clouds.
International Journal of Robotics
Research.

e based on point clouds
o evenasingleview

e machine learning

e no physical properties needed
o Materials, etc.

e faster than Grasplt!
e works in cluttered environments
e assumes only two-finger grippers
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https://github.com/atenpas/gpd
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
http://www.youtube.com/watch?v=kfe5bNt35ZI

GPD - Point Clouds

e point clouds from RGB-D cameras

o oneview is sufficient
o basic pre-processing is needed
m denoising, downsampling, outliers removal

e onlyinformation in Region of Interest (ROI) is considered

o segmented object
o oronlygivenregionin point cloud, e.g., workspace
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GPD - Grasps sampling

candidates sampled uniformly randomly over the point
cloud

two conditions:
o  thebody of the hand is not in collision with the point cloud
o theclosing region of the hand contains at least one point from the
point cloud

for each candidate, reference frame F of the hand is
computed
Gridsearchingrid G =Y x Z is performed. Yand Z

contains values along y and z axis of F.

o corresponding rotation and translation for each grid point applied to
the hand

rotated hand pushed along negative x axis until contact

with point cloud occurs
o last point before contact added to set of possible grasp if any point
from the point cloud is in the closing region of the hand
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GPD - Grasp Classification

e four-layer CNN

o Binary classification - grasp/no grasp

e trained from 300 thousand (sampled from 1.5
million) labeled grasps for 55 objects (~
labeled using ~ force closure)

e pointsin closing region (b) are voxelized
(MxMxM voxels)

e inputto CNN are heightmaps (c, d) of voxels
projected to planes orthogonal to axes of the
hand (b) and surface normals (e)

(c)

(a)

(d)

(b)
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Others - PointNetGPD

https://github.com/lianghongzhuo/PointNetGPD
o Liangetal.,2018. PointNetGPD: Detecting Grasp Configurations

from Point Sets, IEEE International Conference on Robotics and _
Automation.

e same grasp sampling as GPD Comparative experiments on object set 1
fewer parameters in CNN than GPD -> less prone to

overfitting

no hand-crafted features needed for training
works with more sparse point clouds
provides dataset with 350k real point clouds
grasp with probability, not only binary

PointNetGPD *4.5 GPD x4.2
6/6 Succeed/Trail S/5 Succeed/Trail



https://github.com/lianghongzhuo/PointNetGPD
https://arxiv.org/abs/1809.06267
https://arxiv.org/abs/1809.06267
https://arxiv.org/abs/1809.06267
http://www.youtube.com/watch?v=RBFFCLiWhRw

Interactive Perception-Action-Learning for Modelling Objects

Chist-ERA (2019-2022)
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IPALM Consortium

Imperial College London. UK, Krystian Mikolajczyk, Yiannis Demiris Imperlal College
Al reasoning, vision, human-robot Interaction, developmental robotics London

ENPC ParisTech, France, Vincent Lepetit
Object modeling from vision

. Ecole des Ponts , .
IRI. Spain, Francesc Moreno Noguer BiartsTooh Institut de Robotica
o . Arste i Informatica Industrial
DL for non-rigid objects from appearance and depth

Aalto University, Finland, Ville Kyrki A ,

Perception, learning and manipulation of objects =
Aalto University ! O C
Czech Technical University in Prague, Czech Republic, Matej Hoffmann (\&(ﬁﬂg T:EE{:lCAL

UNIVERSITY
IN PRAGUE

Haptic object exploration, embodied perception


https://www.imperial.ac.uk
https://www.imperial.ac.uk/people/k.mikolajczyk
https://www.paristech.fr/en/homepage
https://www.labri.fr/perso/vlepetit/
https://www.iri.upc.edu
https://www.aalto.fi/en
https://www.aalto.fi/en/people/ville-kyrki
https://www.cvut.cz/en
https://sites.google.com/site/matejhof/home

IPALM Interactive Perception-Action-Learning for Modelling Objects
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What:

e Automatic digitization of objects and their physical properties by exploratory manipulations.
e Learning physical properties of objects from: vision, touch, audio and text.
e Abenchmark and a database of objects models with a variety across properties

Imperial College & ‘ Institut de Robbica A‘? /‘\&%‘ e
Informatica Industrial u \J\- UNIVERSITY

London Ec Id s Ponts Aalto University
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IPALM Interactive Perception-Action-Learning for Modelling Objects

learning

L

prio7

How:

e Vision and language resources provides priors and category level models for object
recognition and manipulation

e Instance modelling based on a perception-action-learning loop

e New knowledge from instances is then used to refine category-level models

L3
Imperial College & Institut de Robotica A‘?
i Informatica Industrial | | UnivERSITY
London Ecoledes Ponts Aalto University
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How?
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Measuring visco-elastic properties of soft objects

- empirical assessment of the feasibility of haptic online soft object discrimination
- elasticity and viscoelasticity estimation from compression and release cycles

- evaluation of 2-finger grippers with force feedback and F/T sensor

- analysis of effects of precycling, compression speed and gripper surface area

- dataset and code publicly available

Stress

(a) Robotiq 2F-85

Kinova cube

8 B 8 8

Stress [kPa]

(c) Force/Torque sensor (d) Professional setup

NF2140

(c) Robotiq FT300

b s
(b) Foams (c) Mixed set



Single-grasp deformable object classification

Robotiq 2F-85 action parameters sensory response classifier classification
2 channels: gripper
T posm
\ position, motor current
N ' - k nearest
t ” squeezing speed neighbors
|

2 channels: gripper /
position, gripper force
Support

B Vector
. == Machine

2 channels: motor /
position, motor current

OnRobot RG6

LSTM "

! ,,,_.' . < 5 < 3
§07 channeler 96 tackle, X Single-grasp deformable object classification: the effect of gripper

3 torque, 8 joint positions (Long-Short Term Memory morphology, sensing modalities, and action parameters

gb SoftHand

latent space of
object properties
3 . P o jemmmmm e ——————— %
configuration . ; 5 \

A stiffness / elasticity
squeezing speed shape

volume !
density

surface roughness

Michal Pliska’, Michal Mare$', Pavel Stoudek', Zdenék Straka', Karla St&panova?, Matéj Hoffmann'

' Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague
?Czech Institute of Informatics, Robotics, and Cybemetics, Czech Technical University in Prague

Barrett hand \ 4

CZECH INSTITUTE

Pliska, M., Mares, M., Straka, Z., Stoudek, P., Stepanova, K. and M FAcuLTY F"P OF INFORMATICS

iy . . . OF ELECTRICAL ROBOTICS AND
Hoffmann, M. (2022), 'Single-grasp deformable object classification: the % ENGINEERING k% CYBERNETICS |
effect of gripper morphology, sensing modalities, and action -
parameters'. [under review]



https://docs.google.com/file/d/15wFGXU2cGWDDv15SxPCk6YC2mGwm7yy0/preview

Visual vs. haptic perception

volume

Haptic - relating to the sense of touch ~ tactile and proprioceptive information

(Compared to vision,) haptic perception is importantly active and
embodiment-dependent
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Fig. 4: Objects set — classification accuracy. (a) OnRobot
RG6. (b) Robotiq 2F-85. (c) QB Soft Hand (d) Barrett Hand.

By oy @ W ;
. 100 Doy 05 Mgy Mg ¥ 100
-l 7400 5734
% - S0 4687
ith features - 54.00 067 4250 Wik KNNwth features - 5633 50.67  49.00 47.33 4775 o & KW with features.

B Svm- 7E7 6800 6808 © F
VM 73.00 52.00 61.6¢ oo
. . LSTM - 6600 6467 5700 3867 6208 20

(a) OnRobot RG6 (b) RObOtiq 2F-85 (c) Barrett Hand

Fig. 5: Polyurethane foams set — classification accuracy. (a)
OnRobot RG6 (b) Robotiq 2F-85 (c) Barrett Hand.

Principal Component 2

Principal Component 1

Pliska, M., Mares, M., Straka, Z., Stoudek, P., Stepanova, K. and

Hoffmann, M. (2022), 'Single-grasp deformable object classification: the

effect of gripper morphology, sensing modalities, and action
parameters'. [under review]
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Active visuo-haptic shape completion

Meshes Voxels
e computes where to touch objects based o O
on reconstruction uncertainty from single ? Beurst "-‘
input point cloud .
. , : >+ ='\Y"RE
e experimental evaluation of reconstruction cunen  EHID A
accuracy against five baselines point cloud ( }
e higher grasp success rates than the | '
. #® N
baseline ' inforr?\:tion
Number of touches g3 Hapﬁc
RGB Point cloud GT o 1 2 3 4 5 - exploration
D D) THGy | sy
e - | ) 4 ) é & p | p | { ." Object +
\:l \ ) Simulation. - - depth camera
\ : ( ‘\A oy \1‘ - .
eJ &5 &5 & & &

Rustler, L., Lundell, J., Behrens, J. K., Kyrki, V., & Hoffmann, M. (2022). 'Active Visuo-Haptic Object Shape Completion'. /EEE Robotics and Automation Letters 7 (2), 5254-5261. hitps://youtu.be/iZF4ph4zMEA


https://youtu.be/iZF4ph4zMEA
http://www.youtube.com/watch?v=iZF4ph4zMEA

Embodied Perception-Action-Learning Loop

measurement: 1C1
camera image (RGB) Category eIaStICuI.!:X ﬁﬁﬁﬁﬁﬁ measurement:
parameters: viewpoint P(mug) = 0.9 compression
i P(bowl) = 0.1 parameters: gripper,
— speed

material
P(ceramic) = 0.7
P(metal) = 0.3

measurement:
lifting
S h a pe . parameters: robot,
(full objgct poir robot configuration,
measurement: cloud with friction position of object in
point cloud (D) uncertainty) e measurement: gripper
parameters: ‘ sliding across
viewpoint surface
parameters:
location
Exploratory action selection
: calculate expected perform most Bayes update of
calculate uncertainty of . ! ; ) . .
object attributesy > information gain of different |— promising — network with
measurements measurement measurement

Kruzliak, A. (2021), 'Exploratory action selection to learn object properties through robot manipulation’, Bachelor thesis, Faculty of Electrical
Engineering, Czech Technical University in Prague. [link to thesis page][pdf][received Dean's Award]


https://dspace.cvut.cz/handle/10467/94461
https://dspace.cvut.cz/bitstream/handle/10467/94461/F3-BP-2021-Kruzliak-Andrej-kruzland-bc-thesis-explor-action-sel-final.pdf?sequence=-1&isAllowed=y

Inference from the
Bayesian Network

CATEGORY and MATERIAL weights

are adjusted based on direct probability
observations or observations from other
mixture nodes.

The inference is sample-based using
MCMC (Markov Chain Monte Carlo)
methods using PyMC3.

Network handling utilizing NetworkX
back-end.

4JPYMC3  »§ NetworkX

O(® Network Analysis in Python
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https://docs.pymc.io/en/v3/
https://networkx.org/

Resources

Books / book sections

o

o

o

Chapter 12: Grasping and manipulation in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
Sections 2.9 and 6.2 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control.
Butterworth-Heinemann.

Kao, I., Lynch, K. M., & Burdick, J. W. (2016). Contact modeling and manipulation. In Springer Handbook of Robotics (pp.
931-954). Springer, Cham.

Prattichizzo, D., & Trinkle, J. C. (2016). Grasping. In Springer handbook of robotics (pp. 955-988). Springer, Cham.

Online resources

o

o

o

o

Articles

o

https://modernrobotics.northwestern.edu/nu-gm-book-resource/grasping-and-manipulation/ - video lectures by Kevin
Lynch (covering Lynch, K. M., & Park, F. C. (2017). Modern robotics.)

Lecture slides by Ville Kyrki: Robotic manipulation: Lectures 7 and 8.
https://mycourses.aalto.fi/course/view.php?id=32938&section=1

Grasplt! Simulator: https://graspit-simulator.qgithub.io/

iCub Gazebo grasping benchmark: https://robotology.github.io/icub-gazebo-grasping-sandbox/

MIT RoboSeminar - Ken Goldberg - The New Wave in Robot Grasping: https://youtu.be/ATDrSWZXuwk

Kleeberger, K., Bormann, R., Kraus, W., & Huber, M. F. (2020). A survey on learning-based robotic grasping. Current Robotics
Reports, 1(4), 239-249.
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https://graspit-simulator.github.io/
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