
GVG Lab-13 Solution
Task 1. 1. Find the unknowns a, b, c in the following fundamental matrix

F =

 a 1 1
b 1 0
c 2 1


when the epipole in the first image is [1, 1]>.

2. Find the epipolar line in the second image that corresponds to point [0, 1]> in the first image.

Solution:

1. The epipole ~e1β1 in the first image generates the kernel of F:

F~e1β1
= 0 a 1 1

b 1 0
c 2 1

 1
1
1

 =

 0
0
0

 ⇐⇒ a = −2, b = −1, c = −3.

2. The epipolar line in the second image is given by

l = F~x1β1 =

−2 1 1
−1 1 0
−3 2 1

 0
1
1

 =

 2
1
3


�

Task 2. Consider two cameras with camera projection matrices

P1 =

 1 0 0 1
0 1 0 0
0 0 1 0

 P2 =

 0 0 1 1
0 −1 0 1
1 0 0 0


Find point ~Xδ in space that projects into image points ~u1α1 = [2, 1]T , ~u2α2 = [2, 0]T .

Solution: We can write

ζ1~x1β1
= P1

[
~Xδ

1

]
, ζ2~x2β2

= P2

[
~Xδ

1

]
Substituting the known values from the task and letting ~Xδ =

[
x y z

]>
we obtain

ζ1

 2
1
1

 =

 1 0 0 1
0 1 0 0
0 0 1 0



x
y
z
1

 , ζ2

 2
0
1

 =

 0 0 1 1
0 −1 0 1
1 0 0 0



x
y
z
1




2ζ1 = x+ 1

ζ1 = y

ζ1 = z


2ζ2 = z + 1

0 = −y + 1

ζ2 = x

Eliminating ζ1 and ζ2 we get 
2z = x+ 1

z = y

2x = z + 1

0 = −y + 1

1

x = y = z = 1⇒ ζ1 = z = 1, ζ2 = x = 1.

The world point ~Xδ could be also computed without eliminating ζ1 and ζ2 by computing the kernel of 6 × 6
matrix: [

~x1β1 0 −P1
0 ~x2β2 −P2

]
ζ1
ζ2
~Xδ

1

 = 0


2 0 −1 0 0 −1
1 0 0 −1 0 0
1 0 0 0 −1 0
0 2 0 0 −1 −1
0 0 0 1 0 −1
0 1 −1 0 0 0




ζ1
ζ2
x
y
z
1

 = 0

We see that the kernel is generated by vector
[
1 1 1 1 1 1

]>
. �

Task 3. Suppose we are given the essential matrix

G =

2 0 0
0 2 0
0 0 0


Compute 4 pairs (R,~tδ) with

∥∥~tδ∥∥ = 1 such that they define G (up to scale), i.e.

G = λR
[
~tδ
]
×

for some nonzero λ ∈ R.

Solution:

Remark. In practice, using only image measurements we cannot recover the physical solution (R, ~Cδ) which
generated the images as well as the physical essential matrix E = R

[
~Cδ
]
×. The reason for this is that after fixing

the center and the rotation of the world coordinate frame in the first camera ([2], Equation (12.44)) there is
still a scaling symmetry present in the equations

ζ1~x1γ1 =
[
I | 0

] [~Xδ

1

]
, ζ2~x2γ2 =

[
R | −R~Cδ

] [~Xδ

1

]
given by 


ζ1
ζ2
~Xδ

~Cδ


R

 7→
λ ·


ζ1
ζ2
~Xδ

~Cδ


R


for a nonzero λ ∈ R (the unknowns are depicted in red). In other words, we can scale the basic vectors
of the world coordinate system δ by λ and it will not change the image points ~x1γ1 and ~x2γ2.
This symmetry corresponds to choosing a measuring unit (e.g. millimeters, meters, inches, etc.)
to represent the world point X and the camera center C. This scaling symmetry obviously remains
after reformulating the problem in terms of the fundamental matrix F (7,8 point problems) or in terms of the
essential matrix E (5 point problem). By dehomogenizing the formulations (e.g. fixing β to 1 in [2, Equation
(12.34)] or adding the last equation in [2, Equation (12.109)]) we fix the measuring unit. An important
remark to be made here is that we don’t know the relation of the measuring unit that we fixed
to the known measuring units, like millimeters, meters, inches, etc. However, it doesn’t matter
in which measuring unit we represent the 3D reconstruction of the scene (and it doesn’t matter
that we don’t know the relation to the known units), because all the units are equivalent. (We
just won’t be able to imagine how big is the reconstructed scene). While we can still use the

2

reconstructed scene for visual localization, this approach of 3D reconstruction cannot be used for
obstacle avoidance, e.g., in drones (since you don’t know how far the obstacle is in known units).

That’s why, for obstacle avoidance, stereo cameras are used (where you know the distance ~Cδ
between the lenses in known measuring units).

First we compute the Frobenius norm of G ([2, Equation (12.50)])

‖G‖F =

√√√√ 3∑
i,j=1

G2ij =
√

22 + 22 =
√

8 = 2
√

2.

The normalized matrix G ([2, Equation (12.53)]) then looks like

G =

√
2G

‖G‖F
=

√
2

2
√

2
G =

1

2
G =

1 0 0
0 1 0
0 0 0


We now know that G is representable by s1R

[
~tδ
]
× for some s1 ∈ {+1,−1} ([2, Equation (12.53)]), where

~tδ =
~Cδ

‖~Cδ‖ . Notice that ~tδ belongs to the kernel of G:

G~tδ = s1R
[
~tδ
]
×
~tδ︸ ︷︷ ︸

0

= 0.

However, since the kernel is 1-dimensional, it has 2 representatives of the unit norm (with opposite signs), and
clearly, knowing only G, we don’t know which of them corresponds to ~tδ. Thus, there are 2 possibilities for ~tδ.
We compute the kernel of G:

Gv = 0

and get the generator

v =

0
0
1

⇒ ~t+δ =

0
0
1

 , ~t−δ =

 0
0
−1

 .
1) ~t+δ =

0
0
1

. We know that there holds

G = s1R
[
~t+δ
]
×

for some s1 ∈ {+1,−1}. We substitute G and ~t+δ to this equation and get1 0 0
0 1 0
0 0 0

 = s1R

 0 −1 0
1 0 0
0 0 0


Now, there are 2 possibilities for s1.

1.1) s1 = 1. We get the following equation:1 0 0
0 1 0
0 0 0

 = R+

 0 −1 0
1 0 0
0 0 0

 (1)

We use the well-known fact from linear algebra: if R is a 3 × 3 rotation matrix and x and y are linearly
independent vectors from R3×1, then (Rx)× (Ry) = R(x× y) ([2, Equation (12.59)]). Looking at Equation (1)
we see that we can take x and y to be the 1st and the 2nd columns of

[
~t+δ
]
×, since they are linearly independent.

Thus, 1
0
0

 0
1
0

 1
0
0

×
0

1
0

 = R+

0
1
0

 −1
0
0

 0
1
0

×
−1

0
0


3

1 0 0
0 1 0
0 0 1

 = R+

 0 −1 0
1 0 0
0 0 1


Now, unlike in Equation (1), we see that the matrix to the right of R+ is invertible, and we can compute R+
uniquely by

R+ =

1 0 0
0 1 0
0 0 1

 0 −1 0
1 0 0
0 0 1

−1 =

 0 1 0
−1 0 0

0 0 1


1.2) s1 = −1. We get 1 0 0

0 1 0
0 0 0

 = R−

 0 1 0
−1 0 0

0 0 0

 (2)

We apply the same trick with the cross product and get1 0 0
0 1 0
0 0 1

 = R−

 0 1 0
−1 0 0

0 0 1



R− =

1 0 0
0 1 0
0 0 1

 0 1 0
−1 0 0

0 0 1

−1 =

 0 −1 0
1 0 0
0 0 1


2) ~t−δ =

 0
0
−1

. We have the equation

G = s1R
[
~t−δ
]
× .

Notice that for s1 = 1 we get Equation (2) and for s1 = −1 we get Equation (1).

Thus, we get in total 4 solutions:


 0 1 0
−1 0 0

0 0 1


︸ ︷︷ ︸

R+

,

0
0
1


︸︷︷︸
~t+δ

 ,


 0 −1 0

1 0 0
0 0 1


︸ ︷︷ ︸

R−

,

0
0
1


︸︷︷︸
~t+δ

 ,


 0 1 0
−1 0 0

0 0 1


︸ ︷︷ ︸

R+

,

 0
0
−1


︸ ︷︷ ︸
~t−δ

 ,


 0 −1 0

1 0 0
0 0 1


︸ ︷︷ ︸

R−

,

 0
0
−1


︸ ︷︷ ︸
~t−δ




.

We could look at the essential matrices R
[
~tδ
]
× these solutions generate:

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸
R+

[
~t+δ

]
×

,

−1 0 0
0 −1 0
0 0 0


︸ ︷︷ ︸

R−

[
~t+δ

]
×

,

−1 0 0
0 −1 0
0 0 0


︸ ︷︷ ︸

R+

[
~t−δ

]
×

,

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸
R−

[
~t−δ

]
×


We see that all of them are multiples of G. We can also check that R+ and R− differ by the rotation about the
baseline b = 〈~t+δ〉 = 〈~t−δ〉 by 180◦:

R+ =

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

Rotb(180◦)

R−

The figure below shows the geometry of the computed 4 solutions [1, Figure 9.12]:

4

�

References

[1] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge University Press, 2010,
Second Edition.

[2] Tomas Pajdla, Elements of geometry for computer vision, https://cw.fel.cvut.cz/wiki/_media/

courses/gvg/pajdla-gvg-lecture-2021.pdf.

5

https://cw.fel.cvut.cz/wiki/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf

