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has a special form which corresponds to a special change of a coordinate
system in the three-dimensional affine space.

3.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K1, K2 are known.
Hence we can pass from F to E using Equations 3.14, 3.15 as

E “ KJ
2 F K1 (3.41)

then recover the relative pose of the cameras, set their coordinate systems
and finally reconstruct points of the scene.

3.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points
!x1β1 , !x2β2 using K1, K2 to “calibrated”

!x1γ1 “ K´1
1
!x1β1 and !x2γ2 “ K´1

2
!x2β2 (3.42)

and then use camera projection matrices as follows

ζ1 !x1γ1 “ P1γ1

„

!Xδ
1



and ζ2 !x2γ2 “ P2γ2

„

!Xδ
1



(3.43)

Matrix H allows us to choose the global coordinate system of the scene as
pC1, ε1q. Setting

H´1 “

«

RJ
1
!C1δ

!0J 1

ff

(3.44)
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we get from Equation 3.38

P1γ1 “
”

I |!0
ı

(3.45)

P2γ2 “
”

R2 R
J
1 | ´ R2 p!C2δ ´ !C1δq

ı

“
”

R2 R
J
1 | ´ R2R

J
1 p!C2ε1 ´ !C1ε1q

ı

(3.46)

“
”

R | ´ R !Cε1
ı

(3.47)

and the corresponding essential matrix

E “ R
”

!Cε1

ı

ˆ
(3.48)

From image measurements, !x1γ1 , !x2γ2 , we can compute, Section 3.2, matrix

G “ τ E “ τ R
”

!Cε1

ı

ˆ
(3.49)

and hence we can get E only up to a non-zero multiple τ. Therefore, we

can recover !Cε1 only up to τ.
We will next fix τ up to its sign s1. Consider that the Frobenius norm of a

matrix G

}G}F “

g

f

f

e

3
ÿ

i, j“1

G2
i j

“
b

trace pGJGq “

d

trace

ˆ

τ2
”

!Cε1

ıJ

ˆ
RJR

”

!Cε1

ı

ˆ

˙

“

d

τ2 trace

ˆ

”

!Cε1

ıJ

ˆ

”

!Cε1

ı

ˆ

˙

(3.50)

“ |τ|
b

2 }!Cε1}2 “ |τ|
?

2 }!Cε1} (3.51)

We have used the following identities

GJG “ τ2
”

!Cε1

ıJ

ˆ
RJR

”

!Cε1

ı

ˆ
“ τ2

”

!Cε1

ı

ˆ

”

!Cε1

ı

ˆ
(3.52)

“ τ2

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y
z 0 ´x

´y x 0

fi

fl “ τ2

»

–

y2 ` z2 ´x y ´x z
´x y x2 ` z2 “ y z
´x z ´y z x2 ` y2

fi

fl

60



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-4-26 (pajdla@cvut.cz)

We can now construct normalized matrix Ḡ as

Ḡ “
?

2 G
b

ř3
i, j“1 G

2
i j

“
τ

|τ|
R

«

!Cε1

}!Cε1}

ff

ˆ

“ s1 R

”

!tε1

ı

ˆ
(3.53)

with new unknown s1 P t`1,´1u and !tε1 denoting the unit vector in the
direction of the second camera center in ε1 basis.

We can find vector !vε1 “ s2!tε1 with new unknown s2 P t`1,´1u by
solving

Ḡ !vε1 “ 0 subject to }!vε1} “ 1 (3.54)

to get

Ḡ “ s1 R

„

1

s2
!vε1



ˆ
“

s1

s2
R r!vε1sˆ (3.55)

s Ḡ “ R r!vε1sˆ (3.56)
“

s g1 s g2 s g3
‰

“ R
“

v1 v2 v3
‰

(3.57)

with unknown s P t`1,´1u, unknown rotation R and known matrices
“

g1 g2 g3
‰

“ Ḡ and
“

v1 v2 v3
‰

“ r!vε1sˆ.
This is a matricial equation. Matrices Ḡ, r!vε1sˆ are of rank two and hence

do not determine R uniquely unless we use RJR “ I and |R| “ 1. That
leads to a set of polynomial equations. They can be solved but we will use
the property of vector product, § 2, to directly construct regular matrices
that will determine R uniquely for a fixed s.

Consider that for every regular A P R3ˆ3, we have, § 2,

pA !xβq ˆ pA !yβq “ !xβ 1 ˆ !yβ 1 “
A´J

|A´J|
p!xβ ˆ !yβq (3.58)

which for R gives

pR !xβq ˆ pR !yβq “ R p!xβ ˆ !yβq (3.59)
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Using it for i, j “ 1, 2, 3 to get

ps giq ˆ ps g jq “ pR viq ˆ pR v jq (3.60)

s2 pgi ˆ g jq “ R pvi ˆ v jq (3.61)

pgi ˆ g jq “ R pvi ˆ v jq (3.62)

i.e. three more vector equations. Notice how s disappeared in the vector
product.

We see that we can write

“

s g1 s g2 s g3 g1 ˆ g2 g2 ˆ g3 g1 ˆ g3
‰

“
“ Rs

“

v1 v2 v3 v1 ˆ v2 v2 ˆ v3 v1 ˆ v3
‰

(3.63)

There are two solutions R` for s “ `1 and R´ for s “ ´1. We can next
compute two solutions !t`ε1 “ `!vε1 and !t´ε1 “ ´!vε1 and combine them
together to four possible solutions

P2γ2`` “ R`

”

I | ´!t`ε1

ı

(3.64)

P2γ2`´ “ R`

”

I | ´!t´ε1

ı

(3.65)

P2γ2´` “ R´

”

I | ´!t`ε1

ı

(3.66)

P2γ2´´ “ R´

”

I | ´!t´ε1

ı

(3.67)

The above four camera projection matrices are compatible with Ḡ. The one
which corresponds to the actual matrix can be selected by requiring that all
reconstructed points lie in front of the cameras, i.e. that the reconstructed
points are all positive multiples of vectors !x1ε1 and !x2ε2 for all image points.
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3.4.2 Point computation

Let us assume having camera projection matrices P1, P2 and image points
!x1β1 , !x2β2 such that

ζ1 !x1β1 “ P1

„

!Xδ
1



and ζ2 !x2β2 “ P2

„

!Xδ
1



(3.68)

We can get !Xδ, and ζ1, ζ2 by solving the following system of (inhomoge-
neous) linear equations

«

!x1β1
!0 ´P1

!0 !x2β2 ´P2

ff

»

—

—

–

ζ1

ζ2

!Xδ
1

fi

ffi

ffi

fl

“ 0 (3.69)

3.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fun-
damental matrix from seven point correspondences and only then used
camera calibration matrices to recover a multiple of the essential matrix.
Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspon-
dences. Not only that five is smaller than seven but using the calibration
right from the beginning permits all points of the scene generating the
correspondences to lie in a plane.

We start from Equation 3.42 to get !x1γ1 and !x2γ2 from Equation 3.43
which are related by

!xJ
2β2
K´J

2 E K
´1
1
!x1β1 “ 0 (3.70)

!xJ
2γ2
E !x1γ1 “ 0 (3.71)

The above equation holds true for all pairs of image points p!x1γ1 , !x2γ2q that
are in correspondence, i.e. are projections of the same point of the scene.
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