GVG – Geometry of Computer Vision & Graphics

Tomas Pajdla, Torsten Sattler 2023

CIIRC - Czech Institute of Informatics Robotics and Cybernetics, CTU in Prague

AAG – Applied Algebra & Geometry

AAG

Applied Algebra

3D Reconstruction

Camera Geometry

Robotics

Visual localization

PhD Student

Vision

Learning

DAIMLER

Magik Eye

Continental

Leica

Industry

We collaborate with

PhD Student

Alaebraic

Geometry

Omni-Vision

3D sensing

Photogrammetry

Research

We apply elements of

Algebra Geometry

Statistics

Robotics Machine Learning

Optimization

Computer Vision

We are funded by H2020 FU

3D Reconstruction for Movies

Robotics for Industry 4.0 Industry

We collaborate with DAIMLER

Omni-Vision

Leica

Photogrammetry

Camera calibration

Magik Eye

Continental Camera calibration

T Pajdla pajdla@cvut.cz

3D sensing

Basic & Applied Research

AAG Leader

Vision

Robotics

Algebra

Geometry

Optimization

Computer Vision

Machine Learning

Statistics

Robotics

Vision

Robotics

Mathematics Machine Learning

Research

We apply elements of

3D Vision

Learning

Robotics

PhD Student 3D Vision

Polynomial Optimization

PhD Student

Projects We are funded by

3D Reconstruction for Movies

IMPACT OP VaVPI Intelligent Machine Perception

R4I OP VaVPI

Robotics for Industry 4.0

Computer Vision

Teaching

We teach Geometry of

Robotics at

FEE of the CTU in Prague

MFF of Charles University

Robotics and Cybernetics

Tomas Paidla - paidla@cvut.cz

Czech Technical University in Praque

AAG Applied Algebra & Geometry Group

Theory

30 Minimal Problems

5pt Calibrated Relative Pose

Camera Geometry

Many Minimal

reconstruction Problems in

RANSAC based

optimization

views

Configuration

solutions

views

Configuration

solutions

views

Configuration

Macaulav2 program over the finite field $\mathbb{Z}/13$

7*x^2*v^4 + 18*x*v^3*z^2 +

Applications

Research

We apply elements of

Geometry

Statistics

Optimization

Computer Vision Robotics

Machine Learning

Teaching

We teach Geometry of

Computer Vision

Robotics at

H2020 EU

OP VaVPI

FEE of the CTU in Prague MFF of Charles University

> **Projects** We are funded by

3D Reconstruction for Movies

IMPACT OP VaVPI Intelligent Machine Perception

R4I

Robotics for Industry 4.0

Industry We collaborate with

DAIMLER

Omni-Vision

Leica

Photogrammetry

Magik Eye

3D sensing **Continental**

Camera calibration

Best Student Paper Award

AAG - Applied Algebra & Geometry

Tomas Pajdla - pajdla@cvut.cz T Pajdla pajdla@cvut.cz

ETH zürich

Czech Technical University

CZECH INSTITUTE OF INFORMATICS

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

CTU

UNIVERSITY

3D Reconstruction

Camera Geometry

Robotics

Visual localization

in Prague

Applied Algebra & Geometry Group

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

CTU

3D Reconstruction

Camera Geometry

Robotics

Visual localization

3D Mapping

Research

We apply elements of

- Algebra Geometry
- Statistics
- Optimization
- Computer Vision
- **Robotics**
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague

MFF of Charles University **Projects**

We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI Intelligent Machine Perception

OP VaVPI

Robotics for Industry 4.0

Industry We collaborate with

DAIMLER

Omni-Vision

Photogrammetry

Magik Eye 3D sensing

Continental

Camera calibration

T Pajdla pajdla@cvut.cz

Czech Institute of Informatics Robotics and Cybernetics

Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

Czech Technical University

in Prague

Applied Algebra & Geometry Group

MIKROS MPC

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Visual Effects

Open 3D Reconstruction Pipeline: alicevision.org

MIKROS

technicolor

MIKROS

Research

We apply elements of

Algebra

Geometry Statistics

Optimization

Computer Vision

Robotics

Machine Learning

Teaching

We teach Geometry of

Computer Vision Robotics at

FEE of the CTU in Prague

MFF of Charles University **Projects**

We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception OP VaVPI

R4I

Robotics for Industry 4.0

Industry We collaborate with

DAIMLER

Omni-Vision

Leica

Photogrammetry

Magik Eye 3D sensing

Continental

Camera calibration

Czech Institute of Informatics Robotics and Cybernetics

Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz T Pajdla pajdla@cvut.cz

Czech Technical University

in Prague

Robotics & Machine Perception

We apply elements of

Research

- Algebra
- Geometry
- Statistics Optimization
- Computer Vision
- **Robotics**
- Machine Learning

Teaching

We teach Geometry of

Computer Vision

Robotics at

FEE of the CTU in Prague

MFF of Charles University

OP VaVPI

Projects We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception

R4I

Robotics for Industry 4.0

Industry

We collaborate with

DAIMLER

Omni-Vision

feica

Photogrammetry

Magik Eye

3D sensing

Continental

G Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Applied Algebra

& Geometry

Group

CTU

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Autonomous Driving

AKTIENGESELLSCHAF1

Tomas Pajdla - pajdla@cvut.cz

Research

We apply elements of Algebra

Machine Learning

Geometry

Optimization

Statistics

Teaching

We teach Geometry of

Computer Vision Robotics at

FEE of the CTU in Prague

MFF of Charles University **Projects**

We are funded by

H2020 EU 3D Reconstruction for Movies

IMPACT OP VaVPI

Robotics for Industry 4.0

OP VaVPI

Intelligent Machine Perception **R4I**

Industry

We collaborate with

DAIMLER

Omni-Vision

Leica

Photogrammetry

Magik Eye

3D sensing **Continental**

Camera calibration

T Pajdla pajdla@cvut.cz

GVG Lectures

Lectures [Monday 11:00-12:30 KN:E-112]

Tomas Pajdla, Torsten Sattler

#	Date	Lecture mat Pajdla. Elements of Geometry for Computer Vision and Computer Grahics				
01	20.2.	TS: Geometry of CV & CG and S and V, LA [Sec. 2.1] and S and V, Image coordinate system [Sec. 5] and V				
02	27.2.	TS: Mathematical model of the perspective camera [Sec. 6], Kronecker product [Sec. 2.5] as V1 v2 V2 V2				
03	06.3.	TP: Camera calibration and pose [Sec. 7.1] as S v1 v2				
04	13.3.	TP: Calibrated camera pose computation [Sec. 7.2, 7.3], Vector product [Sec. 2.2, 2.3] a S				
05	20.3.	TP: Homography [Sec. 8.1-8.5] a S V1 V2				
06	27.3.	TS: Image based camera localization as S v1 v2 v2 v3				
07	03.4.	TP: Projective plane [Sec. 9.1-9.2] a S V				
_	10.4.	Easter Monday				
08	17.4.	TP: Vanishing points & line [Sec. 9.4, 9.5] projective space [Sec. 10] camera autocalibration [Sec. 11] and S and V				
09	24.4.	TP: Dual space [Sec. 2.4] lines under homography [Sec. 9.3] a S0 a S1 V				
10	04.5.	TS: Epipolar geometry [Sec. 12.1-12.2] a Slides SO SO SI				
11	09.5.	TP: 3D reconstruction with a calibrated camera [Sec. 12.3, 12.4] a S0, a S1, V				
12	15.5.	TP: Calibrated camera motion computation [Sec. 12.5] a S0, a S1, V				
13	22.5.	TS: 3D Reconstruction pipelines a Saz V				

GVG Labs

Labs [Monday 12:45-14:15, 14:30-16:00 KN:E-230]

Martin Matoušek, Viktor Korotynskiy , Vojtěch Pánek, Diana Sungatullina:

- solving of algebraic problems related to vision geometry; this is without computer, i.e. 'pen-and-paper'
- solving of practical tasks (home-works) on a real data with computer

Week	Date	Pen & Paper	Solution	Test	Assignment	Deadline
01	20.2.	Basic elements of LA		Test-α	HW-01 Image Coordinate System	
02	27.2.	Projection matrix Lab-02			HW-02 Projection Matrix	
03	06.3.	Camera internal calibration			HW-03 Camera calibration	HW-01
04	13.3.	Calibrated camera pose Lab-04			HW-04a Calibrated pose I	HW-02
05	20.3.	Preparation for Test 1 aab-05			HW-04b Calibrated pose II	HW-03
06	27.3.	Test 1 Example		Test 1	HW-05 Homography	HW-04a
07	03.4.	Homography Lab-07			HW-06 Panorama	HW-04b
08	10.4.	Easter monday				
09	17.4.	Projective space Lab-08			HW-07 Autocalibration	HW-05
10	24.4.	Lines under homography Lab-09				HW-06
11	04.5.	Test 2 Example		Test 2	HW-08 Epipolar geometry	HW-07
12	09.5.	Epipolar geometry aLab-12			HW-09a 3D reconstruction I	
13	15.5.	3D Reconstruction Lab-13			HW-09b 3D reconstruction II	HW-08
14	22.5.	Test 3 Example		Test 3		HW-09a, HW-09b

T Pajdla pajdla@cvut.cz

Assessment

- 1. All homework must be submitted via BRUTE and accepted.
- 2. At least 50% of points in total for the homework.
- 3. At least 50% of points in total from the tests.
- 4. Regular submission of homework ends on May 24, 2021. Later submissions are possible only by an agreement with the assistants.
- 5. All the above conditions have to be fulfilled, and the results have to be recorded in the Submission system before the exam.

Exam

The exam consists of a written and an oral part. It is required to achieve at least 50% of points from the written exam to be admitted to the oral exam. The grade depends on the exam (40%), tests (30%), and homework (30%).

Exam content:

- 1. Linear algebra [4,5,6,7]: linear space, basis, coordinates, linear dependence/independence, matrices, rank, determinant, eigenvalues and eigenvectors, solving systems of linear equations, Frobenius theorem and linear independence, linear function, affine function, linear mapping and its matrix, computing roots of a polynomial via eigenvalues of its companion matrix, dual space, dual basis, change of the dual basis corresponding to a change of a basis, vector product and derived linear mappings, SVD, dual space, and dual basis.
- 2. Course material

Rules

- 1. Lecture: It is very difficult to pass the course without attending online lectures.
- 2. Labs: It is impossible to pass the course without attending © online labs.
- 3. Homework: Homework is assigned at a lab where it can be discussed with teaching assistants. Students work out homework individually (rules in Czech). The deadline for submitting homework via BRUTE is on Monday at 6:00 in the morning two weeks after the assignment. Late submissions are penalized (10% for each commenced day of delay but not more than 50% of points).
- 4. Assessment: see above.
- 5. Tests: Students take tests individually.

BRUTE (cw.felk.cvut.cz/brute) – homework, tests, quizzes, points, feedback **Forum** is the communication channel (limited emails & no messages in MS Teams)

- 1. Login to **BRUTE** at cw.felk.cvut.cz/brute
- 2. Check that you see GVG in 2023L in BRUTE
- 3. Check that you see News in the **Forum**

Questions ...