
2 Fermat Primality Test (Haskell, 8 points)

In this task, for a given natural number p

1. generate a sequence of pseudorandom natural numbers a such that 2 ≤ a < p− 1,
2. test whether p is prime by checking whether the following equation holds for each generated

pseudorandom number a

ap−1 ≡ 1 (mod p). (1)

If (1) holds for all numbers a, it is highly probable that p is prime. This probabilistic pri-
mality test is known as the Fermat Primality Test. Note, the Carmichael numbers, which are
composite yet pass the test for all a relatively prime to the respective number, are avoided
when testing your implementation of this task.

2.1 Pseudo-random Number Generation

To generate pseudorandom numbers in a given interval, use the Linear Congruential Generator
(LCG)

xn+1 = (Axn + C) mod M, (2)

where A, C and M are constants. This equation generates the next pseudorandom number
xn+1 from the previous xn. The number x0 is the seed.

The number b drawn from (2) can be transformed to the interval blower ≤ b′ < bupper as

b′ = (b mod (bupper − blower)) + blower. (3)

2.2 Haskell Assignment

Your task is to implement the Fermat Primality Test in Haskell. There are two parts to this
task: first, implement the LCG, and then the test itself.

The LCG generator is represented as

data LCG = LCG Int Int Int Int deriving Show

where the four Ints in the LCG 4-tuple are A, xn, C, and M w.r.t. (2). Implement the
function

generate_range :: Int -> Int -> State LCG Int

which is used to sample random integers blower ≤ b′ < bupper where the lower and upper
bounds are set in the first and second function input, respectively. The state of the LCG is
kept using the State monad. So start your code with

import Control.Monad.State

Note that it is desirable to follow (2) and (3) as closely as possible, since the tasks are
tested with constant seed and thus are considered deterministic. The function is used as
follows.

> runState (generate_range 1 100) (LCG 513 1 1 1024)

(20, LCG 513 514 1 1024)



Implement the primality test in the function

primality :: Int -> Int -> State LCG Bool

where the first input is the potential prime and the second is the number of repetitions
of the test (i.e., the number of generated pseudorandom numbers). The function is used as
follows:

> evalState (primality 17 1000) (LCG 513 1 1 1024)

True

> evalState (primality 42 1000) (LCG 513 1 1 1024)

False

> evalState (primality 9 0) (LCG 513 1 1 1024)

True

Hint: To prevent overflow of Int, compute ap−1 mod p sequentially using the identity
ak+1 mod p = a·(ak mod p) mod p, i.e., sequentially multiplying by a and applying modulo
to each partial result.


	Fermat Primality Test (Haskell, 8 points)
	Pseudo-random Number Generation
	Haskell Assignment


