1 Collapsing integer lists (Scheme, 8 points)

Write a function F that takes as input a list of integers 1st, e.g. (), (1 11 1),°(4 5 4
4 11 2 3 1), and works recursively as follows:

If the input list is empty, F returns the empty list

If the input list contains the same integers, for example (1 1 1 1) or ‘(22 22), F return
the list itself as output.

Otherwise, first produce a new list new_1st defined by

min{illst[i] = 1st[k], i > k} - k
if 31 > k such that 1st[i] = 1st[k]

new_lst[k] = ,

0 otherwise

for 1 < k < length(lst).

In other words, to get the k-th term of the new list new_1st, look at the k-th integer
in the input list 1st, call this N, and count how many position do you need to switch
to get the next occurrence of N in 1st. If the last occurrence of N in 1st is at the k-th
position, the k-th term of new_1st is 0.

Then remove all the zeros from new_1st and obtain a list new new_1st.
Finally, return F(new_new_lst).

Ezxzamples One has

because

(F
(F
(F
(F
(F
(F

454411231 — 2
13213121 — 33
111212312 — 1
32 100 32 100 — 2 2 0

‘1111)) — “(1111)
(22 22)) — (22 22)
‘(454411231)) — (1
‘13213121) — ‘(11
‘(001122) — “(111)
€(32 100 32 100)) — ‘(2 2)

601013000 —2113-— 0100 — 1

420200 — 33422 — 1010 — 11
12233000 — 112233 — 101010 — 111
0 — 22

For testing purposes export the function F. So your file should be named taskl.rkt and

start with the following lines:

#lang racket
(provide F)



	Collapsing integer lists (Scheme, 8 points)

