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Overview

s Key concepts
RNA secondary structure,
secondary structure features: stems, loops, bulges,
Nussinov algorithm,
adapting Nussinov to take free energy into account.
= untouched

special base pairs: non-canonical, base triplets, pseudoknots,

advanced algorithms including deep networks, transfer learning etc.




Why RNA is interesting

s Messenger RNA (mRNA) is not the only important class of RNA

ribosomal RNA (rRNA)

* ribosomes are complexes that incorporate several RNA subunits in ad-
dition to numerous protein units,

transfer RNA (tRNA)

x transport amino acids to the ribosome during translation,

the spliceosome, which performs intron splicing

x a complex with several RNA units,

the spliceosome, which performs intron splicing

x a complex with several RNA units,

microRNAs and other ncRNAs that play regulatory roles,

many viruses (e.g. HIV) have RNA genomes,

guide RNA

* sequence complementarity determines whether to cleave DNA,
folding of an mRNA can be involved in regulating the gene's expression.




RNA secondary structure

s RNA is typically single stranded,

s folding, in large part is determined by base-pairing

m A-U and C-G are the canonical base pairs,

m other bases will sometimes pair, especially G-U,

m base-paired structure is referred to as the secondary structure of RNA,

m related RNAs often have homologous secondary structure without significant
sequence similarity.




tRNA Secondary Structure
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Small

subunit ribosomal RNA
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6S RNA secondary structure
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Secondary structure features

51-n E. coli
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Secondary structure as CFG

s Context-free grammar (CFG) is a suitable formalism for representing palin-
drome languages.

seql seq2 seqs I I |
A A C A C A CAéGAAA(IJUGSG(/]
G A G A G A GCUGCARARAGC seq2
GeC UeA UxC
Ael CeG CxU
CeG GeC GxG
S — aWu|cWig | gWic|uWa
Wi — aWou | cWag | gWac | uWaa
Wy — aWiu | cWig | gWic | uWsa
Wiz —  gaaa| gcaa.

c d g g d d d ¢ U g

Durbin, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.




Four key problems

= Predicting RNA secondary structure ( )

Given: RNA sequence,
Do: predict secondary structure that sequence will fold into,

m Searching for instances of a given structure

Given: an RNA sequence or its secondary structure,

Do: find sequences that will fold into a similar structure,
s Modeling a family of RNAs

Given: a set of RNA sequences with similar secondary structure,
Do: construct a model that captures the secondary structure regularities
of the set,

= Identifying novel RNA genes

Given: a pair of homologous DNA sequences,

Do: identify subsequences that appear to have highly conserved RNA sec-
ondary structure (putative RNA genes).




RNA folding assumption and pseudoknots

s We will assume that base pairings do not cross,
m for base-paired positions i, i’ and j, j, with i < i’ and
j <j', we must have
eitheri <i' <j<j orj<j <i<i (notnested),
ori<j<j <iorj<i<i <j (nested),
mcannot havei < j<i' <jorj<i<j <t
these crossings are called ,
dynamic programming breaks down with them,

fortunately, they are not very frequent.

i g @

not nested nested crossing

pseudoknot ¢

5 U—na
SA-C-U-A-C-C—

-C-G-G-G-

Seliverstov et al. BMC Microbiology, 2005.




Predicting RNA secondary structure

= Given:

an RNA sequence,

the constraint = pseudoknots not allowed,
[ | DO:
find a secondary structure for the RNA,

it maximizes the number of base pairing positions,
= Nussinov algorithm

key ideas

* do this using dynamic programming,
x start with small subsequences,

x progressively work to larger ones.




DP in the Nussinov algorithm

m Let
5(i. §) = 1 if z; and z; complementary e
7 0 otherwise j = paired bases in
subsequence [i, /]
GGGAA/AUTCC

/

= initialization

G

G ¢
v(i,0 —1)=0 fori =2to L G
v(i,2) =0 fori=1to L 2
A
m recursion u
f . . C
Y(i+1,7) c

Y(4,j) = max <

Durbin, Biological Sequence Analysis:

’Y(Z ‘|‘ 17 ] — 1) —I_ 5(7/, ]) Probabilistic Models of Proteins and Nucleic Acids.
\mawicp<;[V(i, k) +y(k + 1, 5)]




Nussinov algorithm traceback

m Determine one non-crossing RNA structure with maximal score.

push(l,L) onto stack
repeat until stack 1is empty
pop(i, J)
if 2> 7 continue
else if ~(t+1,5) =~ ) push(i+1,7)
else if (4,5 —1)=7(¢,5) push(i,j—1)
else if ~(t+1,57—1)+0d(i,75) =~(,J)
record ,) base pair
push(¢+1,5 —1)
else for k=t+1 to j—1:
if (k) +y(k+1,7) =0, J)
push(k+ 1,75)
push(i, k)
break




Predict RNA secondary structure by energy minimization

s Maximizing the number of base pairs oversimplifies prediction of folding,

m however, we can generalize the key recurrence relation by minimizing free
energy instead.

(B(i+1,5)

E(i,j—1)

min;<k<i| E(t, k) + E(k + 1, )]

\P(i,j) < case that 7 and j are base paired

E(i,j) = min <




Predict RNA secondary structure by energy minimization

= A sophisticated program, such as Mfold [Zuker et al.|, can take into account
free energy of the “local environment” of [i, j].

«(1,j) + LoopEnergy(j —i — 1)

a(i, 7) 4+ StackingEnergy(¢, j,e + 1,7 — 1)+ Pi+ 1,7 — 1)
ming>1[a(i, j) + BulgeEnergy(k) + P(i + k + 1,5 — 1)]
ming>1|a(i, j) + BulgeEnergy(k) + P(i + 1,5 — k — 1)]

ming >1(a(i, j) + LoopEnergy(k + 1) + P(i + k+ 1,5 — 1 — 1)]
minjspisia(t,j) + E(i+1,k) + E(k+ 1,7 — 1))

P(i,j) = min <




Predict RNA secondary structure by energy minimization

a(z,j) + LoopEnergy(j —i — 1) ming >1|a(i, j) + LoopEnergy(k + 1) + P(i + k+ 1,5 — | — 1)]
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Mfold example

= Mfold solutions with energy up to 5% from the best

different from Nussinov results (2 Watson-Crick base pairs only here).

GGGAAAUCC ) )
: / N
- v
G — G — G \ G — ¢
| | | . | |
c— ¢ — v R / G — G — C 3
AG =-0.80 kcal/mol AG = 0.20 kcal/mol

http://unafold.rna.albany.edu/




Summary

s RNA has numerous roles in

translation, splicing, DNA replication, gene regulation,
s RNA structure understanding is important

substitutions possible, function preserved as long as they preserve structure,
m Secondary structure can be predicted

comparative sequence analysis

* molecules with similar function will form similar structures,

* it searches for positions that co-vary,

free energy minimization

x take a sequence, search for energetically stable complementary regions,
* in a simplified form discussed in this lecture,

* current folding programs get on average 50-70% base pairs correct,

* many foldings lie close to the predicted global energy minimum,

in general an intractable task.




