Deep Learning (BEV033DLE)
Lecture 4. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

4 Definitions and Main Properties
e Gradient Descent vs SGD
e Perceptron as SGD
e Understanding Convergence
e Variance Reduction: Running averages, Momentum

e [mplicit regularization

Stochastic Gradient Descent

L(0)
foee= ik MeReKOra

¢ Gradient Descent: wg ‘\ 3

® (Jy — VQL(Qt) '

® 0i1="0;—aug; v ’&z"’

"'u@m

¢ SGD:

e Noisy gradient g;

o E[g:] =gt

o 0i1="01— gy

SGD for Statistical Estimation

¢ Problem Setup:
e Predictor: f(x;0), 8 — vector of all parameters 6

e Loss of making prediction f(x) when the true state is y: I(y, f(x;0))
e Expected loss: E|l(y, f(x;0))], (z,y) ~ data

o Empirical loss: L =23 1(y;, f(z:;0)) =: = >_.Li(6)

e Learning problem: m@inL(@)

¢ Examples
e Regression in R™:
f(x;0) € R™ — predicted values
Squared error loss: 1; = ||y; — f(x:;0)||*
e (lassification with K classes:
f(z) € RE - scores
Predictive probabilities p(y = k|x) = softmax(f(x;0))x
NLL loss: 1;(0) = —(logsoftmax(f(z;;0))),,

SGD for Statistical Estimation

¢ Gradient Descent (GD):
e Gradient at current point 6;: g = VL(0;) =<, VI;(6)
e Make a small step in the steepest descent direction of L:
o 0i1="0;— g
e Historically called “'batch gradient descent”

o |f the dataset is very large, lots of computation to make a small step

¢ Stochastic Gradient Descent (SGD):
e Pick M data points I = {iy,...ips} at random
e Estimate gradient as §r = =7 >, ; V1i(6;)
® 0i1="0;— gy
o {(x;,y;)|2 € I} is called a (mini)-batch

¢ “Noisy"” gradient g;:
o E[gi] = g:
e V[g:] =+ V[g;], where ' is stochastic gradient with 1 sample
e Diminishing gain in accuracy with larger batch size M

e |n the beginning a small subset of data suffices for a good direction

More General Form

¢ Problem Setup:
o Loss: L(0) =K, yp=l(y, f(x;0))] + R(0)
e T[raining set is given as a generator p*
(fixed training set is a special case)

e R(0) is a regularizer, not dependent on the data

¢ SGD:
e Draw a batch of data (z;,%;), i.i.d. from p*

Why a generator?

Randomized data augmentation Simulation
(L %l N "/’4
r{%, \@‘ '(;$.

.
Learning from a generative model

StyleGAN2

learned encoder

Perceptron

4 Single Layer Perceptron

(McCulloch-Pitts neuron):

Frank Rosenblatt

SRR

¢ Perceptron Algorithm as SGD:
e Two classes y = =*1

Predictor: f(z) =w'z, decide by sign
Loss: I(y, f(x)) = max(—yw'x,0)
Draw a point (x,y) from the training data at random

_ _ - —yx, if classified incorrectly
Stochastic gradient: g; =

0, otherwise
Make a step: w11 = wi+yx
No need of step size thanks to scale invariance

6
Mark | Perceptron, 1958

NewYork Times: “the
embryo of an electronic
computer that we
expect will be able to
walk, talk, see, write,
reproduce itself and be
conscious of its
existence”

Understanding Convergence @

¢ lteration cost: 7

e GD: O(n) — full data

e SGD: O(M) — mini-batch
¢ Guarantees on convergence rate depend on assumptions. Setup closest to NNs:

e [(0) is bounded from below

e VL (0) is Lipschitz continuous with constant p

e Bounded variance: E||VI;(0) — VL(0)|* < o?

or stronger condition E||V;(0)||* < o2 for some o and all §

¢ Convergence rates: 10% T

e Error at iteration t: best over iterations | s e
expected gradient norm, o G const
ming—1..t—1{|[E[VL(0k)]||}

e GD with step size oy = « S
Error: O(3) 5 10°

e SGD with step size a; = a/\/t
Error: O(%) 107 | 1 +0.1

e SGD with step size oy = « ' t
Error: O() + O(apo?) o2

[Mark Smidt CPSC 540 Lecture 11] work

Understanding Convergence @

¢ Convergence rates: 102 ¢

e GD with step size oy = « | :EB (llei
Error: O(%) GD const
e SGD with step size oy = a/\/t
Error: O(lo\g/(;))
e SGD with step size oy = «

Error: O(3) 4+ O(apo?)

4 Insights:

e SGD wins when there is a lot of data ot
107 ' ! ! !
e Convergence with a constant step size is fast

but to within a “region” around optimum

work

4 Remarks:

e To have guarantees need to use conservative estimates with very small step sizes, etc.
e Different other setups possible: convex / strongly convex, smooth/non-smooth

e The rate is often faster in practice, but the general picture stays

Learning Rate Schedule @

¢ Common practice: decrease learning rate in steps

e Example: start with @ = 0.1 then decrease by factor

4 Comments

e (Consistent with the idea of fast convergence to a
region

o After the sep size decrease, “1/n" rate replays

e Many other empirically proposed schedules

Courtesy: [Chen et al. “Closing the Generalization Gap of
Adaptive Gradient Methods in Training Deep Neural Networks']

Train Loss

Test Error

of 10 at epochs 100 and 150
1.0
—— SGD-Momentum
| ==+ Adam
0-81 — - Amsgrad
- == AdamW
0.6-_ —-- Yogi
\\ AdaBound
0.4
0.2 A
00 T T T T T - — o
0 20 40 60 80 100 120 140 160 180 200
Epochs
(a) Train Loss for VGGNet
0.20 1=
| —— SGD-Momentum
0-18 1 1 ~=- Adam
0.16 - —-- Amsgrad
' ,\ ——- AdamW
0.144 I | —-- Yogi
/40 AdaBound
0.12 A R A As o
\Qu‘, { . W/ A —— Padam
o0 UEE
0.08 | *A;\x 5 Ay -y X2
0.06 -
0.04

0 20 40 60 80 100 120 140 160 180 200
Epochs

(d) Test Error for VGGNet

How to Measure the Progress? @

4 Batch Estimate

e Batch mean: L—Mzzel

e Not good idea, too high variance

4 Training data mean

* L=3>l

e Accurate, good if the dataset not too large !

4 Average using all last known loss values

1 Z llast

e |ow variance, hysteresis 1 epochs

/\

e need to remember losses for full dataset

4 Running Exponentially Weighted Average (EWA)
e L:=(1—¢q)L+qL

e Higher variance/ larger hysteresis

e Need to remember only the running average loss

Same Applied to Gradient — Variance Reduction

4+ SGD
e Batch mean: =+ ..,V

e need a small step size

+ GD
* Full gradient: g=2%".VI,

® too costly

4 Stochastic Average Gradient (SAG)
o §im L (e (VI)™ + 50,4, (V1))

e Improved convergence rates (convex analysis)

e need to remember gradients

4+ SGD with momentum

o g:=(1—q)g+qg
e practical variance reduction

e remember only the running average gradient

11

Running Averages @ o

¢ General setup: 12
e X, k=1,...,t — independent random variables _
EWA weights qg=0.2
e ¢; €(0,1]

e First order filter: ;= (1 —q)pe—1+ q: Xs
¢ Exponentially Weighted Average (EWA):

e Constant ¢; = ¢

o 1= (1—q)po+qXy

o o= (1-q)*u+(1—q)gX1+qX,

° ...
Y
o u=1-q) '+ > (1-9) " "eXy (1=q)
1<k<t
= wopo+), wrpXg _ _
1<k<t Running mean weights

¢ Running mean: _EEEEEEEEESEEEEEEEEEE

¢ Qt:%

o 11 =0uo+ X4
o ="+ X
® [lty] = H%Mt + H%Xtﬂ = ;:_i,ut—l + H%(Xt ‘|‘Xt+1>

(%) Smooth transition from running mean to EWA, Unbiased Filter

SGD with Momentum

¢ Algorithm
e Stochastic gradient: § = ﬁZielt Vi;
e EWA filtered gradient: g = (1—q)g:—1+qg
° Step: 0; =0;_1 — ag;

¢ In Pytorch:
o Velocity: vy = uvi_1+4g
o Step: 0; =0;_1 —ev;

(x) Show equivalence by relating v; and g; and p and ¢

e When changing momentum pu often need to adjust the learning rate as well

13

SGD with Momentum @

¢ With variance sufficiently low — GD with momentum, i.e. consider g is noise-free

e Velocity: vy := uvi_1+g
® Step: 0, =0,_1—cvy

4 Even exact gradient may not be a good direction
4 Cancels “noise” in the incorrect prediction of the function change

Gradient descent

=—=>

Gradient descent with momentum

¢ The "heavy ball" method
e Friction (px < 1) and slope forces build up velocity
e Recall the hysteresis effect from using estimates from the past
e The inertia may lead to oscillatory behavior (not good)

e Sometimes helpful to overcome plateaus

14

“Nesterov" Momentum @

¢ Common Momentum 15
e Velocity: vy = pve+ g(xy)

Lt41
* Step: i1 = Tt — €V41

The step consists of momentum and current gradient
The momentum part of the step is known in advance

Can make it before computing the gradient:

® Nesterov Momentum
e lLeading sequence: y; = xy — vy —£9(yt)
e Velocity: viy1 = pve+ g(y¢)

o Step: T =y —€9(Yt)

Lt+1
Takes advantage of the known part of the step

Less overshooting

¢ Can express as steps on the leading sequence alone (*):
e Velocity: v = pvr + g(ye)
° Step: yri1 =1y — 5(§(yt) "'/th)

The two sequences eventually converge

Implicit Regularization

MNIST CIFAR-10
0.06} — Training | —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ |
0.5_ _
0.041
S 5 %4 |
0-027 0.2
0.01r 0.1
94 8 16 32 64 128 256 512 1K 2K 4K 948 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

4 We increase the network capacity but generalization improves, why?
e There exist global minima that generalize poorly

e SGD somehow finds a good global minimum

Implicit Regularization @

4 Logistic (or multinomial) regression:

. A—0 _
argmin,, L(w) + Aljw|D > w — max margin w.r.t. |- ||,

GD for min,, £L(w)

GD iteration (*):

t+l — gt 4 argmin ((Aw, VE(wt» T %HAU}H%)
Aw

w

wt

t — 00 Mot > Max margin w.r.t. |-]2

4 Linear model, loss with a unique finite root, YW — set of optimal solutions

SGD (steppest in || -||,,) iteration:
witl = wt+argm1n(Aw,VL(wh)) + %HAng)

t—oo w'— nearest (in ||-||,) optimal point to w’

SGD induces implicit p-norm regularization, helping to improve p-norm margin

1
2] Soudry et al. (2018) "The Implicit Bias of Gradient Descent on Separable Data"

Rosset et al. (2004) Margin Maximizing Loss Functions

3] Gunasekar et al. (2018) "Characterizing Implicit Bias in Terms of Optimization Geometry"

17

[1]

2]

3]

Smaller Batch Size -> More Regularization @ o

4+ Typically choose batch size to fully utilize parallel throughput (in GPUs 18
means ~10"4 independent arithmetic computations in parallel)

4 Limited by memory

4 Smaller batch -> noisier gradient -> implicit regularization

Synthetic data

Decision boundary of batch size 1 Decision boundary of batch size 5 Decision boundary of batch size 30

NLP data

93.5

e—e Dropout: No
9—® Dropout: Yes

Lei et al. (2018) “Implicit Regularization of Stochastic
Gradient Descent in Natural Language Processing:

test sccuracy

Observations and Implications”

| 1 1 1 | L 1
0 5 10 15 20 25 30 35
batch size

More about SGD

How to Draw Data Points? @
4+ How should we draw data points for SGD: 20

e every time select randomly with replacement
e shuffle the data once
e shuffle at each epoch but draw without replacement

4 Empirical evidence:

Bottou (2009): “Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms”
logistic regression d = 47,152, n = 781,256

0.01

0.001 ¢

11111

11111

1e-09 1e-09 1e-09
1 10 50 100 500 5 10 50 100

Random selection:

5 10 50 100 500

Cycling the same random Random shuffle at each
slope=—1.0003 shuffle: slope=—1.8393 epoch: slope=—2.0103

¢ A simple consideration:
Drawing n times with replacement from the dataset of size n some points may not be
selected. On average each point is selected with probability =~ 0.63 for large n. Takes

long time to even out (x) — associated exercise

Implicit Regularization: Early Stopping @

21

4+ We expect the learning to overfit, often it does not

4 Example when it does:

1.0 20660066 O LS HH6S6 . . -
= L2 0 A AR explicit regularization
OO @ €
o0& ..
o @ . ,:: no overfitting
>‘ \
S 0.6 | .
s Test accuracy decreases
3 =0 test(w/aug, wd, dropout)
8 0.4 o—o train(w/ aug, wd, dropout) W|th more IteratlonS
&= test(w/o aug, dropout)
0.2 & train(w/o aug, dropout)
' test(w/o aug, wd, dropout)
| train(w/o aug, wd, dropout)
0.0>

0 2000 4000 6000 8000 10000
thousand training steps

(a) Inception on ImageNet

[Zhang et al. (2017) “Understanding Deep Learning Requires ReThinking Generalization’]

4 Early stopping could potentially improve generalization when other regularizers are absent

4 Need a validation set

Running Averages: How Much Smoothing? @

¢ General setup

e X; — independent random variables

e g, < (0,1]

e Running mean: p; = (1 —q¢)ps—1+q:Xs is a r.v.
¢ Expectation:

o Elu] =(1—q)E|us—1] + ¢:E[X:] — running average of expectations
t

o B[] = woE[po] + > wiE[Xy]
k=1
e In context of SGD with learning rate ¢ — 0, all E[X}] are the same and p; is an

unbiased estimate
¢ Variance:

o V]u]=(1- Qt)2Y[Mt—1] +q; V[X{]
o Viu]=wiVo+ g_:l wy, VI X]

. . . ¢ /
e Variance reduction of running mean: >, _ w; = Zk:u% =%

2
e Variance reduction of EWA: Z};:Owi = 1_((11_(1)2 — in the limit of large ¢

x) Equivalent window size of EWA: n=2—-1. E.g. ¢=0.1 <> n=19
q

4 Can use EWA with a decreasing q series for a progressive smoothing

22

More in Lecture 8
4 Loss Landscape of NNs
e Permutation invariance and overcomplete parameterizations
e [ocal minima and saddle points in high dimensions
e Empirical evidence of many good local minima
e Redundancy helps optimization
4 SGD sensitivity to change of variables
4 Adaptive methods

23

