Deep Learning (BEV033DLE) Lecture 4. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

- → Definitions and Main Properties
 - Gradient Descent vs SGD
 - Perceptron as SGD
 - Understanding Convergence
 - Variance Reduction: Running averages, Momentum
 - Implicit regularization

 $L(\theta)$

- Gradient Descent:
 - $g_t = \nabla_{\theta} L(\theta_t)$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$

- ◆ SGD:
 - ullet Noisy gradient $ilde{g}_t$
 - $\mathbb{E}[\tilde{g}_t] = g_t$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$

SGD for Statistical Estimation

- Problem Setup:
 - Predictor: $f(x;\theta)$, θ vector of all parameters θ
 - Loss of making prediction f(x) when the true state is y: $l(y, f(x; \theta))$
 - Expected loss: $\mathbb{E}[l(y, f(x; \theta))]$, $(x, y) \sim \mathsf{data}$
 - Empirical loss: $L = \frac{1}{n} \sum_{i} l(y_i, f(x_i; \theta)) =: \frac{1}{n} \sum_{i} l_i(\theta)$
 - Learning problem: $\min_{\theta} L(\theta)$
- Examples
 - Regression in \mathbb{R}^m :

 $f(x;\theta) \in \mathbb{R}^m$ – predicted values

Squared error loss: $l_i = ||y_i - f(x_i; \theta)||^2$

ullet Classification with K classes:

$$f(x) \in \mathbb{R}^K$$
 – scores

Predictive probabilities $p(y = k|x) = \operatorname{softmax}(f(x;\theta))_k$

NLL loss: $l_i(\theta) = -(\log \operatorname{softmax}(f(x_i; \theta)))_{y_i}$

SGD for Statistical Estimation

- Gradient Descent (GD):
 - Gradient at current point θ_t : $g_t = \nabla L(\theta_t) = \frac{1}{n} \sum_i \nabla l_i(\theta_t)$
 - ullet Make a small step in the steepest descent direction of L:
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$
 - Historically called "batch gradient descent"
 - If the dataset is very large, lots of computation to make a small step
- Stochastic Gradient Descent (SGD):
 - Pick M data points $I = \{i_1, \dots i_M\}$ at random
 - Estimate gradient as $\tilde{g}_t = \frac{1}{M} \sum_{i \in I} \nabla l_i(\theta_t)$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$
 - $\{(x_i, y_i) | i \in I\}$ is called a **(mini)-batch**
- "Noisy" gradient \tilde{g}_t :
 - $\bullet \ \mathbb{E}[\tilde{g}_t] = g_t$
 - $\mathbb{V}[\tilde{g}_t] = \frac{1}{M} \mathbb{V}[\tilde{g}_t^1]$, where \tilde{g}^1 is stochastic gradient with 1 sample
 - ullet Diminishing gain in accuracy with larger batch size M
 - In the beginning a small subset of data suffices for a good direction

More General Form

m

5

- Problem Setup:
 - Loss: $L(\theta) = \mathbb{E}_{(x,y) \sim p^*}[l(y,f(x;\theta))] + R(\theta)$
 - Training set is given as a generator p^* (fixed training set is a special case)
 - $R(\theta)$ is a regularizer, not dependent on the data
- ♦ SGD:
 - Draw a batch of data $(x_i, y_i)_{i=1}^M$ i.i.d. from p^*
 - $\tilde{g} = \frac{1}{M} \sum_{i} \nabla l(y_i, f(x_i, \theta)) + \nabla R(\theta)$

Why a generator?

Randomized data augmentation

Simulation

Learning from a generative model

5

Single Layer Perceptron (McCulloch-Pitts neuron):

Frank Rosenblatt

Mark I Perceptron, 1958

- Perceptron Algorithm as SGD:
 - Two classes $y = \pm 1$
 - Predictor: $f(x) = w^{\mathsf{T}}x$, decide by sign
 - Loss: $l(y, f(x)) = \max(-yw^\mathsf{T} x, 0)$
 - ullet Draw a point (x,y) from the training data at random
 - $\bullet \ \, \text{Stochastic gradient:} \ \, \tilde{g}_t = \begin{cases} -yx, & \text{if classified incorrectly} \\ 0, & \text{otherwise} \end{cases}$
 - Make a step: $w_{t+1} = w_t + yx$
 - No need of step size thanks to scale invariance

NewYork Times: "the embryo of an electronic computer that we expect will be able to walk, talk, see, write, reproduce itself and be conscious of its existence"

Understanding Convergence

m p

7

- Iteration cost:
 - GD: O(n) full data
 - SGD: O(M) mini-batch
- Guarantees on convergence rate **depend on assumptions**. Setup closest to NNs:
 - $L(\theta)$ is bounded from below
 - $\nabla L(\theta)$ is Lipschitz continuous with constant ρ
 - Bounded variance: $\mathbb{E}\|\nabla l_i(\theta) \nabla L(\theta)\|^2 \leq \sigma^2$ or stronger condition $\mathbb{E}\|\nabla l_i(\theta)\|^2 \leq \sigma^2$ for some σ and all θ
- Convergence rates:
 - Error at iteration t: best over iterations expected gradient norm, $\min_{k=1...t-1}\{\|\mathbb{E}[\nabla L(\theta_k)]\|\}$
 - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
 - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
 - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$

[Mark Smidt CPSC 540 Lecture 11]

Understanding Convergence

8

- Convergence rates:
 - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
 - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
 - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$
- Insights:
 - SGD wins when there is a lot of data
 - Convergence with a constant step size is fast but to within a "region" around optimum

→ Remarks:

- To have guarantees need to use conservative estimates with very small step sizes, etc.
- Different other setups possible: convex / strongly convex, smooth/non-smooth
- The rate is often faster in practice, but the general picture stays

Learning Rate Schedule

9

- Common practice: decrease learning rate in steps
 - ullet Example: start with lpha=0.1 then decrease by factor of 10 at epochs 100 and 150
- **♦** Comments
 - Consistent with the idea of fast convergence to a region
 - After the sep size decrease, "1/n" rate replays
 - Many other empirically proposed schedules

(a) Train Loss for VGGNet

(d) Test Error for VGGNet

Courtesy: [Chen et al. "Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks"]

- → Batch Estimate
 - Batch mean: $\tilde{L} = \frac{1}{M} \sum_{i \in I} l_i$
 - Not good idea, too high variance

•
$$L = \frac{1}{n} \sum_{i} l_i$$

Accurate, good if the dataset not too large

•
$$\hat{L} := \frac{1}{n} \sum_{i} l_i^{\text{last}}$$

- Low variance, hysteresis 1 epochs
- need to remember losses for full dataset

$$\hat{L} := (1-q)\hat{L} + q\tilde{L}$$

- Higher variance/ larger hysteresis
- Need to remember only the running average loss

11

♦ SGD

- Batch mean: $\tilde{g} = \frac{1}{M} \sum_{i \in I} \nabla l_i$
- need a small step size

♦ GD

- Full gradient: $g = \frac{1}{n} \sum_{i} \nabla l_{i}$
- too costly
- ◆ Stochastic Average Gradient (SAG)

•
$$\tilde{g} := \frac{1}{n} \left(\sum_{i \in I} (\nabla l_i)^{\text{new}} + \sum_{i \notin I} (\nabla l_i)^{\text{old}} \right)$$

- Improved convergence rates (convex analysis)
- need to remember gradients

♦ SGD with **momentum**

- $g := (1-q)g + q\tilde{g}$
- practical variance reduction
- remember only the running average gradient

Running Averages

2

- General setup:
 - X_k , k = 1, ..., t independent random variables
 - $q_t \in (0,1]$
 - First order filter: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$
- Exponentially Weighted Average (EWA):
 - Constant $q_t = q$
 - $\mu_1 = (1-q)\mu_0 + qX_1$
 - $\mu_2 = (1-q)^2 \mu_0 + (1-q)qX_1 + qX_2$
 - ...
 - $\mu_t = (1-q)^t \mu_0 + \sum_{1 \le k \le t} (1-q)^{t-k} q X_k$ = $w_0 \mu_0 + \sum_{k \le t} w_k X_k$

Running mean:

- $\bullet \ q_t = \frac{1}{t}$
- $\mu_1 = 0\mu_0 + X_1$
- $\mu_t = \frac{t-1}{t} \mu_{t-1} + \frac{1}{t} X_t$
- $\mu_{t+1} = \frac{t}{t+1}\mu_t + \frac{1}{t+1}X_{t+1} = \frac{t-1}{t+1}\mu_{t-1} + \frac{1}{t+1}(X_t + X_{t+1})$

Running mean weights

 (\star) Smooth transition from running mean to EWA, Unbiased Filter

SGD with Momentum

[3

- Algorithm
 - Stochastic gradient: $\tilde{g} = \frac{1}{M} \sum_{i \in I_t} \nabla l_i$
 - EWA filtered gradient: $g_t = (1-q)g_{t-1} + q\tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \alpha g_t$
- In Pytorch:
 - Velocity: $v_t = \mu v_{t-1} + \tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$
 - (*) Show equivalence by relating v_t and g_t and μ and q
 - ullet When changing momentum μ often need to adjust the learning rate as well

SGD with Momentum

- lacktriangle With variance sufficiently low o GD with momentum, *i.e.* consider $ilde{g}$ is noise-free
 - Velocity: $v_t := \mu v_{t-1} + \tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$
- ◆ Even exact gradient may not be a good direction
- ◆ Cancels "noise" in the incorrect prediction of the function change

- ◆ The **"heavy ball"** method
 - ullet Friction $(\mu < 1)$ and slope forces build up velocity
 - Recall the hysteresis effect from using estimates from the past
 - The inertia may lead to oscillatory behavior (not good)
 - Sometimes helpful to overcome plateaus

- Common Momentum
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(x_t)$
 - Step: $x_{t+1} = x_t \varepsilon v_{t+1}$

The step consists of momentum and current gradient The momentum part of the step is known in advance Can make it before computing the gradient:

- Nesterov Momentum
 - Leading sequence: $y_t = x_t \varepsilon \mu v_t$
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $x_{t+1} = y_t \varepsilon \tilde{g}(y_t)$

Takes advantage of the known part of the step Less overshooting

- Can express as steps on the leading sequence alone (\star) :
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $y_{t+1} = y_t \varepsilon (\tilde{g}(y_t) + \mu v_{t+1})$

The two sequences eventually converge

Implicit Regularization

CIFAR-10

- ♦ We increase the network capacity but generalization improves, why?
 - There exist global minima that generalize poorly
 - SGD somehow finds a good global minimum

Implicit Regularization

Logistic (or multinomial) regression:

$$\operatorname{argmin}_{w} \mathcal{L}(w) + \lambda \|w\|_{p}^{p}$$

$$\xrightarrow{\lambda \to 0}$$

 $\xrightarrow{\lambda \to 0} \qquad \qquad w \to \text{max margin w.r.t. } \|\cdot\|_p$

[1]

GD for $\min_{w} \mathcal{L}(w)$

GD iteration (\star) :

$$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \nabla \mathcal{L}(w^t) \rangle + \frac{1}{2\varepsilon} ||\Delta w||_2^2 \right)$$

$$t o \infty$$
 $\frac{w^t}{\|w^t\|} o \max \mathsf{margin} \; \mathsf{w.r.t.} \; \|\cdot\|_2$

[2]

[3]

Linear model, loss with a unique finite root, W – set of optimal solutions

SGD (steppest in $\|\cdot\|_p$) iteration:

$$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \tilde{\nabla} \mathcal{L}(w^t) \rangle + \frac{1}{2\varepsilon} ||\Delta w||_{p}^{p} \right)$$

$$t o \infty$$
 $w^t o$ nearest (in $\|\cdot\|_p$) optimal point to w^0

- SGD induces implicit p-norm regularization, helping to improve p-norm margin
- [1] Rosset et al. (2004) Margin Maximizing Loss Functions
- [2] Soudry et al. (2018) "The Implicit Bias of Gradient Descent on Separable Data"
- Gunasekar et al. (2018) "Characterizing Implicit Bias in Terms of Optimization Geometry"

Smaller Batch Size -> More Regularization

- → Typically choose batch size to fully utilize parallel throughput (in GPUs
- means ~10^4 independent arithmetic computations in parallel)
- ◆ Limited by memory
- ♦ Smaller batch -> noisier gradient -> implicit regularization

Synthetic data

NLP data

Lei et al. (2018) "Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing:

Observations and Implications"

More about SGD

20

- ✦ How should we draw data points for SGD:
 - every time select randomly with replacement
 - shuffle the data once
 - shuffle at each epoch but draw without replacement
- → Empirical evidence:

Bottou (2009): "Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms"

logistic regression d = 47,152, n = 781,256

Random selection: slope=-1.0003

Cycling the same random shuffle: slope=-1.8393

Random shuffle at each epoch: slope=-2.0103

A simple consideration:

Drawing n times with replacement from the dataset of size n some points may not be selected. On average each point is selected with probability ≈ 0.63 for large n. Takes long time to even out (\star) – associated exercise

Implicit Regularization: Early Stopping

- We expect the learning to overfit, often it does not
- Example when it does:

[Zhang et al. (2017) "Understanding Deep Learning Requires ReThinking Generalization"]

- + Early stopping could potentially improve generalization when other regularizers are absent
- Need a validation set

Running Averages: How Much Smoothing?

- General setup
 - X_t independent random variables
 - $q_t \in (0,1]$
 - Running mean: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$ is a r.v.
- Expectation:
 - $\mathbb{E}[\mu_t] = (1 q_t)\mathbb{E}[\mu_{t-1}] + q_t\mathbb{E}[X_t]$ running average of expectations
 - $\mathbb{E}[\mu_t] = w_0 \mathbb{E}[\mu_0] + \sum_{k=1} w_k \mathbb{E}[X_k]$
 - In context of SGD with learning rate $\varepsilon \to 0$, all $E[X_k]$ are the same and μ_t is an unbiased estimate
- Variance:

 - $\mathbb{V}[\mu_t] = (1 q_t)^2 \mathbb{V}[\mu_{t-1}] + q_t^2 \mathbb{V}[X_t]$ $\mathbb{V}[\mu_t] = w_0^2 \mathbb{V}_0 + \sum_{k=1}^t w_k^2 \mathbb{V}[X_k]$
 - Variance reduction of running mean: $\sum_{k=0}^{t} w_k^2 = \sum_{k=1}^{t} \frac{1}{t^2} = \frac{1}{t}$
 - Variance reduction of EWA: $\sum_{k=0}^{t} w_k^2 = \frac{q^2}{1-(1-q)^2}$ in the limit of large t
 - (*) Equivalent window size of EWA: $n = \frac{2}{q} 1$. E.g. $q = 0.1 \leftrightarrow n = 19$
- ◆ Can use EWA with a decreasing q series for a progressive smoothing

More in Lecture 8

- ◆ Loss Landscape of NNs
 - Permutation invariance and overcomplete parameterizations
 - Local minima and saddle points in high dimensions
 - Empirical evidence of many good local minima
 - Redundancy helps optimization
- ♦ SGD sensitivity to change of variables
- Adaptive methods

23