Deep Learning (BEV033DLE) Lecture 4. SGD Alexander Shekhovtsov Czech Technical University in Prague - → Definitions and Main Properties - Gradient Descent vs SGD - Perceptron as SGD - Understanding Convergence - Variance Reduction: Running averages, Momentum - Implicit regularization $L(\theta)$ - Gradient Descent: - $g_t = \nabla_{\theta} L(\theta_t)$ - $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$ - ◆ SGD: - ullet Noisy gradient $ilde{g}_t$ - $\mathbb{E}[\tilde{g}_t] = g_t$ - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$ #### **SGD** for Statistical Estimation - Problem Setup: - Predictor: $f(x;\theta)$, θ vector of all parameters θ - Loss of making prediction f(x) when the true state is y: $l(y, f(x; \theta))$ - Expected loss: $\mathbb{E}[l(y, f(x; \theta))]$, $(x, y) \sim \mathsf{data}$ - Empirical loss: $L = \frac{1}{n} \sum_{i} l(y_i, f(x_i; \theta)) =: \frac{1}{n} \sum_{i} l_i(\theta)$ - Learning problem: $\min_{\theta} L(\theta)$ - Examples - Regression in \mathbb{R}^m : $f(x;\theta) \in \mathbb{R}^m$ – predicted values Squared error loss: $l_i = ||y_i - f(x_i; \theta)||^2$ ullet Classification with K classes: $$f(x) \in \mathbb{R}^K$$ – scores Predictive probabilities $p(y = k|x) = \operatorname{softmax}(f(x;\theta))_k$ NLL loss: $l_i(\theta) = -(\log \operatorname{softmax}(f(x_i; \theta)))_{y_i}$ #### **SGD** for Statistical Estimation - Gradient Descent (GD): - Gradient at current point θ_t : $g_t = \nabla L(\theta_t) = \frac{1}{n} \sum_i \nabla l_i(\theta_t)$ - ullet Make a small step in the steepest descent direction of L: - $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$ - Historically called "batch gradient descent" - If the dataset is very large, lots of computation to make a small step - Stochastic Gradient Descent (SGD): - Pick M data points $I = \{i_1, \dots i_M\}$ at random - Estimate gradient as $\tilde{g}_t = \frac{1}{M} \sum_{i \in I} \nabla l_i(\theta_t)$ - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$ - $\{(x_i, y_i) | i \in I\}$ is called a **(mini)-batch** - "Noisy" gradient \tilde{g}_t : - $\bullet \ \mathbb{E}[\tilde{g}_t] = g_t$ - $\mathbb{V}[\tilde{g}_t] = \frac{1}{M} \mathbb{V}[\tilde{g}_t^1]$, where \tilde{g}^1 is stochastic gradient with 1 sample - ullet Diminishing gain in accuracy with larger batch size M - In the beginning a small subset of data suffices for a good direction #### **More General Form** m 5 - Problem Setup: - Loss: $L(\theta) = \mathbb{E}_{(x,y) \sim p^*}[l(y,f(x;\theta))] + R(\theta)$ - Training set is given as a generator p^* (fixed training set is a special case) - $R(\theta)$ is a regularizer, not dependent on the data - ♦ SGD: - Draw a batch of data $(x_i, y_i)_{i=1}^M$ i.i.d. from p^* - $\tilde{g} = \frac{1}{M} \sum_{i} \nabla l(y_i, f(x_i, \theta)) + \nabla R(\theta)$ #### Why a generator? Randomized data augmentation Simulation Learning from a generative model 5 Single Layer Perceptron (McCulloch-Pitts neuron): Frank Rosenblatt Mark I Perceptron, 1958 - Perceptron Algorithm as SGD: - Two classes $y = \pm 1$ - Predictor: $f(x) = w^{\mathsf{T}}x$, decide by sign - Loss: $l(y, f(x)) = \max(-yw^\mathsf{T} x, 0)$ - ullet Draw a point (x,y) from the training data at random - $\bullet \ \, \text{Stochastic gradient:} \ \, \tilde{g}_t = \begin{cases} -yx, & \text{if classified incorrectly} \\ 0, & \text{otherwise} \end{cases}$ - Make a step: $w_{t+1} = w_t + yx$ - No need of step size thanks to scale invariance NewYork Times: "the embryo of an electronic computer that we expect will be able to walk, talk, see, write, reproduce itself and be conscious of its existence" # **Understanding Convergence** m p 7 - Iteration cost: - GD: O(n) full data - SGD: O(M) mini-batch - Guarantees on convergence rate **depend on assumptions**. Setup closest to NNs: - $L(\theta)$ is bounded from below - $\nabla L(\theta)$ is Lipschitz continuous with constant ρ - Bounded variance: $\mathbb{E}\|\nabla l_i(\theta) \nabla L(\theta)\|^2 \leq \sigma^2$ or stronger condition $\mathbb{E}\|\nabla l_i(\theta)\|^2 \leq \sigma^2$ for some σ and all θ - Convergence rates: - Error at iteration t: best over iterations expected gradient norm, $\min_{k=1...t-1}\{\|\mathbb{E}[\nabla L(\theta_k)]\|\}$ - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$ - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$ - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$ [Mark Smidt CPSC 540 Lecture 11] # **Understanding Convergence** 8 - Convergence rates: - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$ - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$ - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$ - Insights: - SGD wins when there is a lot of data - Convergence with a constant step size is fast but to within a "region" around optimum #### → Remarks: - To have guarantees need to use conservative estimates with very small step sizes, etc. - Different other setups possible: convex / strongly convex, smooth/non-smooth - The rate is often faster in practice, but the general picture stays # **Learning Rate Schedule** 9 - Common practice: decrease learning rate in steps - ullet Example: start with lpha=0.1 then decrease by factor of 10 at epochs 100 and 150 - **♦** Comments - Consistent with the idea of fast convergence to a region - After the sep size decrease, "1/n" rate replays - Many other empirically proposed schedules (a) Train Loss for VGGNet (d) Test Error for VGGNet Courtesy: [Chen et al. "Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks"] - → Batch Estimate - Batch mean: $\tilde{L} = \frac{1}{M} \sum_{i \in I} l_i$ - Not good idea, too high variance • $$L = \frac{1}{n} \sum_{i} l_i$$ Accurate, good if the dataset not too large • $$\hat{L} := \frac{1}{n} \sum_{i} l_i^{\text{last}}$$ - Low variance, hysteresis 1 epochs - need to remember losses for full dataset $$\hat{L} := (1-q)\hat{L} + q\tilde{L}$$ - Higher variance/ larger hysteresis - Need to remember only the running average loss 11 #### **♦** SGD - Batch mean: $\tilde{g} = \frac{1}{M} \sum_{i \in I} \nabla l_i$ - need a small step size #### **♦** GD - Full gradient: $g = \frac{1}{n} \sum_{i} \nabla l_{i}$ - too costly - ◆ Stochastic Average Gradient (SAG) • $$\tilde{g} := \frac{1}{n} \left(\sum_{i \in I} (\nabla l_i)^{\text{new}} + \sum_{i \notin I} (\nabla l_i)^{\text{old}} \right)$$ - Improved convergence rates (convex analysis) - need to remember gradients #### **♦ SGD** with **momentum** - $g := (1-q)g + q\tilde{g}$ - practical variance reduction - remember only the running average gradient # **Running Averages** 2 - General setup: - X_k , k = 1, ..., t independent random variables - $q_t \in (0,1]$ - First order filter: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$ - Exponentially Weighted Average (EWA): - Constant $q_t = q$ - $\mu_1 = (1-q)\mu_0 + qX_1$ - $\mu_2 = (1-q)^2 \mu_0 + (1-q)qX_1 + qX_2$ - ... - $\mu_t = (1-q)^t \mu_0 + \sum_{1 \le k \le t} (1-q)^{t-k} q X_k$ = $w_0 \mu_0 + \sum_{k \le t} w_k X_k$ #### **Running mean:** - $\bullet \ q_t = \frac{1}{t}$ - $\mu_1 = 0\mu_0 + X_1$ - $\mu_t = \frac{t-1}{t} \mu_{t-1} + \frac{1}{t} X_t$ - $\mu_{t+1} = \frac{t}{t+1}\mu_t + \frac{1}{t+1}X_{t+1} = \frac{t-1}{t+1}\mu_{t-1} + \frac{1}{t+1}(X_t + X_{t+1})$ Running mean weights (\star) Smooth transition from running mean to EWA, Unbiased Filter #### **SGD** with Momentum [3 - Algorithm - Stochastic gradient: $\tilde{g} = \frac{1}{M} \sum_{i \in I_t} \nabla l_i$ - EWA filtered gradient: $g_t = (1-q)g_{t-1} + q\tilde{g}$ - Step: $\theta_t = \theta_{t-1} \alpha g_t$ - In Pytorch: - Velocity: $v_t = \mu v_{t-1} + \tilde{g}$ - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$ - (*) Show equivalence by relating v_t and g_t and μ and q - ullet When changing momentum μ often need to adjust the learning rate as well #### **SGD** with Momentum - lacktriangle With variance sufficiently low o GD with momentum, *i.e.* consider $ilde{g}$ is noise-free - Velocity: $v_t := \mu v_{t-1} + \tilde{g}$ - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$ - ◆ Even exact gradient may not be a good direction - ◆ Cancels "noise" in the incorrect prediction of the function change - ◆ The **"heavy ball"** method - ullet Friction $(\mu < 1)$ and slope forces build up velocity - Recall the hysteresis effect from using estimates from the past - The inertia may lead to oscillatory behavior (not good) - Sometimes helpful to overcome plateaus - Common Momentum - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(x_t)$ - Step: $x_{t+1} = x_t \varepsilon v_{t+1}$ The step consists of momentum and current gradient The momentum part of the step is known in advance Can make it before computing the gradient: - Nesterov Momentum - Leading sequence: $y_t = x_t \varepsilon \mu v_t$ - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$ - Step: $x_{t+1} = y_t \varepsilon \tilde{g}(y_t)$ Takes advantage of the known part of the step Less overshooting - Can express as steps on the leading sequence alone (\star) : - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$ - Step: $y_{t+1} = y_t \varepsilon (\tilde{g}(y_t) + \mu v_{t+1})$ The two sequences eventually converge # Implicit Regularization CIFAR-10 - ♦ We increase the network capacity but generalization improves, why? - There exist global minima that generalize poorly - SGD somehow finds a good global minimum ### Implicit Regularization Logistic (or multinomial) regression: $$\operatorname{argmin}_{w} \mathcal{L}(w) + \lambda \|w\|_{p}^{p}$$ $$\xrightarrow{\lambda \to 0}$$ $\xrightarrow{\lambda \to 0} \qquad \qquad w \to \text{max margin w.r.t. } \|\cdot\|_p$ [1] GD for $\min_{w} \mathcal{L}(w)$ GD iteration (\star) : $$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \nabla \mathcal{L}(w^t) \rangle + \frac{1}{2\varepsilon} ||\Delta w||_2^2 \right)$$ $$t o \infty$$ $\frac{w^t}{\|w^t\|} o \max \mathsf{margin} \; \mathsf{w.r.t.} \; \|\cdot\|_2$ [2] [3] Linear model, loss with a unique finite root, W – set of optimal solutions SGD (steppest in $\|\cdot\|_p$) iteration: $$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \tilde{\nabla} \mathcal{L}(w^t) \rangle + \frac{1}{2\varepsilon} ||\Delta w||_{p}^{p} \right)$$ $$t o \infty$$ $w^t o$ nearest (in $\|\cdot\|_p$) optimal point to w^0 - SGD induces implicit p-norm regularization, helping to improve p-norm margin - [1] Rosset et al. (2004) Margin Maximizing Loss Functions - [2] Soudry et al. (2018) "The Implicit Bias of Gradient Descent on Separable Data" - Gunasekar et al. (2018) "Characterizing Implicit Bias in Terms of Optimization Geometry" # Smaller Batch Size -> More Regularization - → Typically choose batch size to fully utilize parallel throughput (in GPUs - means ~10^4 independent arithmetic computations in parallel) - ◆ Limited by memory - ♦ Smaller batch -> noisier gradient -> implicit regularization #### Synthetic data #### NLP data Lei et al. (2018) "Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications" # More about SGD 20 - ✦ How should we draw data points for SGD: - every time select randomly with replacement - shuffle the data once - shuffle at each epoch but draw without replacement - → Empirical evidence: Bottou (2009): "Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms" logistic regression d = 47,152, n = 781,256 Random selection: slope=-1.0003 Cycling the same random shuffle: slope=-1.8393 Random shuffle at each epoch: slope=-2.0103 A simple consideration: Drawing n times with replacement from the dataset of size n some points may not be selected. On average each point is selected with probability ≈ 0.63 for large n. Takes long time to even out (\star) – associated exercise # Implicit Regularization: Early Stopping - We expect the learning to overfit, often it does not - Example when it does: [Zhang et al. (2017) "Understanding Deep Learning Requires ReThinking Generalization"] - + Early stopping could potentially improve generalization when other regularizers are absent - Need a validation set # Running Averages: How Much Smoothing? - General setup - X_t independent random variables - $q_t \in (0,1]$ - Running mean: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$ is a r.v. - Expectation: - $\mathbb{E}[\mu_t] = (1 q_t)\mathbb{E}[\mu_{t-1}] + q_t\mathbb{E}[X_t]$ running average of expectations - $\mathbb{E}[\mu_t] = w_0 \mathbb{E}[\mu_0] + \sum_{k=1} w_k \mathbb{E}[X_k]$ - In context of SGD with learning rate $\varepsilon \to 0$, all $E[X_k]$ are the same and μ_t is an unbiased estimate - Variance: - $\mathbb{V}[\mu_t] = (1 q_t)^2 \mathbb{V}[\mu_{t-1}] + q_t^2 \mathbb{V}[X_t]$ $\mathbb{V}[\mu_t] = w_0^2 \mathbb{V}_0 + \sum_{k=1}^t w_k^2 \mathbb{V}[X_k]$ - Variance reduction of running mean: $\sum_{k=0}^{t} w_k^2 = \sum_{k=1}^{t} \frac{1}{t^2} = \frac{1}{t}$ - Variance reduction of EWA: $\sum_{k=0}^{t} w_k^2 = \frac{q^2}{1-(1-q)^2}$ in the limit of large t - (*) Equivalent window size of EWA: $n = \frac{2}{q} 1$. E.g. $q = 0.1 \leftrightarrow n = 19$ - ◆ Can use EWA with a decreasing q series for a progressive smoothing #### More in Lecture 8 - ◆ Loss Landscape of NNs - Permutation invariance and overcomplete parameterizations - Local minima and saddle points in high dimensions - Empirical evidence of many good local minima - Redundancy helps optimization - ♦ SGD sensitivity to change of variables - Adaptive methods 23