Deep Learning (BEV033DLE)
Lecture 13 Recurrent Neural Networks & Transformer
Networks

Czech Technical University in Prague

® Recurrent models
€ Gated recurrent units, GRU and LSTM networks

® Transformer networks & GPT language models
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Recurrent models in a nutshell

input sequence x = (x1,...,T¢,...,27), r € R™, output sequence y = (y1,-..,yr),
y; € Y and sequence of hidden states h = (hy,...,h7), hy € R%.

recurrent (dynamic) system with outputs

ht — f(xhht—l)w)

Yt = g(htvv)
where w and v are parameters. The model defines sequence-to-sequence mappings
h=F,(z) and y = G,(h).
loss function £(y,y’), often locally additive ¢(y,y") = >, £+ (ys, yz)

Training goal: given training data 7 = {(27,47) | j =1,...,m}, learn the model parameters
w, v by solving .
— Z {(y,(Gyo Fy)(x)) — min
m w,v
(z,y)eT
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Recurrent networks

Incarnations of recurrent models and related tasks

® Deep neural network for classification with additional feedback connections: z; -
constant input, y; - output of the network, h; -states of all hidden layers. The loss

function depends on the last output yr only.

¢ ‘“infinite state automata"”: the output space is sufficient for keeping the history, thus h
and y can be identified, i.e. y; = f(xs,y:—1,w).
Example: Earth observation, land-cover type monitoring x; - sequence of spectral
satellite measurements, y; - sequence of states (e.g. coniferous forest, broadleaf forest,
clearcut, bark beetle degradation etc.)

¢ general sequence-to-sequence segmentation: hidden states h; are needed for keeping
track of longer past and are latent.
Example: NLP translation:

Er liebte zu essen

NULL Er liebte zu essen

He loved to eat
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Learning RNINs is particularly simple in the case that
¢ h and y can be identified, i.e. y; = f(x¢,y:—1,w) and
@ the loss is locally additive > _, £(v+,y;)

Split each sequence (x,y) € 7™ into triplets (y:_1,%¢,y:) and train f from

S‘ S‘g yt, xt Yt—1,W )) — min

w
(:cyET 12

Neither forward nor backward propagation through the sequence are needed.
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Assumptions:

hy = f(xtaht—lvw)
Yt = g(ht,'U)

The mappings f and g are implemented by neural networks and are differentiable w.r.t. their
inputs and parameters. The loss function ¢(y,y’) is differentiable.

Example 1. Both mappings f and g are implemented by one layer networks

at — Wht_l + Uﬂ?t + b ht = tanh(at)
o =Vhs+ec y: = softmax(o;)
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Computing the gradients: Unroll the network in time and apply backpropagation

Let us consider the loss for a single example (z,y*) from the training data.

Computing the gradient w.r.t. v is easy (see Slide 4.). Let us consider the gradient w.r.t. w

Oy, 7)) = C(Yt, Yz ) On,g(he,v) Owhy

I
11+
s
114
&

The first two derivatives are simple. For the last one we have the recurrent expression
Owht = 8wf(flft, ht—law) +8ht_1f(wta ht—law) Owhi—1

This gives

awht wf Itaht 1, W +Z[ H ah‘7 1f :Cja j—1,W )} awf(xiahi—hw)

=1 j7=1+1
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Problems:
¢ backpropagation through time is computationally expensive

¢ Exploding/vanishing gradients: consider for simplicity the linear recurrence hy = Why_;.
For 7 steps we get h, = W7hy. Suppose that we can write W = U 'AU, where A is
diagonal. We get
h, =U"'A"Uhy.
Eigenvalues with magnitude less than one will decay and eigenvalues with magnitude
greater than one will explode.

® We can not apply batch normalisation as simple remedy.
¢ We want the following model ability: events long in the past can trigger changes in

conjunction with current measurements.

Possible solutions: skip connections? designate special nodes in h; for keeping record of
events long in the past?
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¢ Long short term memory, Schmidhuber, 1997

¢ Gated recurrent unit, Cho et al., 2014

Gated recurrent unit (simplified):

A cell consisting of a recurrent unit h; and a gate unit u; € [0, 1]

he =ur—1he—1+ [1 — Ut—l]f(xta ht—hw)
Ut = S(Cﬁt,ht,’l})

The gate unit u; has sigmoid nonlinearity and “decides” whether to copy h; from h;_; or to
apply the recurrence with f.
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Gated recurrent unit (general):
® h is a state vector
® wu is a vector of “update” gates

® ris a vector of “reset” gates

The update equations are
ht = U1 ® ht—l + [1 — ut_l] © S (UZIZt_l + Wrt—l ® ht—l)
where © denotes the element-wise product of vectors. The gate unit outputs are given by

Ut — S (U“a?t + Wuht)
Tt — S(Ur$t -+ tht)
LSTM cells are more complicated — they have separate “forget” and “update” gates.

Main weakness of LSTM & GRU: No explicit modelling of long and short range
dependencies
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Let us consider the task of next token prediction for NLP

Task: Given a corpus of tokens X = (x1,x9,...,2,), train a network for predicting the next
token x; given the context window X; = (x;_k,...,T;_1).

L(X,0) = Zlogp(wi\xi_k,...,xi_l ; 0) — max

Language Model: Generative Pre-trained Transformer (GPT)

1. Vector embedding of tokens with position information and trainable parameter WW':
y; = I'(x;,i, W) € R™

2. For each 1: h() = yz
3. Apply transformer blocks: h; = transformer_block(h;_1)

4. Predict x; by: p(x|X;) = softmax(V hr) with trainable parameter V.
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Transformer (decoder):

1. Self-Attention with learnable parameters W#*, W4, Wv
Key: ¢(y;, WF) € R™
Query: Y(y;, W) € R™
Value: x(y;, W?) € R™

Output: weighted sum of value vectors + layer normalisation (not shown)

)

zi= Y  softmax (¢T(yi)¢(yj)>X(yi)

j=i—k

2. Feed forward network: h; = F'(z;, W) + layer normalisation (not shown)
The attention sub-layer usually consists of several parallel attention heads
Both sub-layers have residual skip connections.

Transformer outputs are differentiable in all parameters

11/12
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A GPT model can be used for various downstream tasks like
¢ natural language inference
¢ question answering
¢ semantic similarity

This can be achieved by adding a linear layer and fine tuning or, even simpler, with zero-shot
or few-shot inference.

The downstream task performance of the model improves with the size of the training
corpus and with the number of epochs in pre-training.
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