DEEP LEARNING (SS2023) SEMINAR 2

Assignment 1 (Chebyshev). In this assignment, we will derive the Chebyshev inequality for the empirical risk. Let X be a real valued random variable with expectation μ and finite variance v. The Chebyshev inequality asserts

$$\mathbb{P}(|X - \mu| > \varepsilon) \leqslant \frac{v}{\varepsilon^2}.$$

Let X_i , $i=1,\ldots,m$ be independent, identically distributed random variables with expectation μ and finite variance v and let $\bar{X}=\frac{1}{m}\sum_{i=1}^{m}X_i$ be their empirical mean. Prove the inequality

$$\mathbb{P}(|\bar{X} - \mathbb{E}\bar{X}| > \varepsilon) \leqslant \frac{v}{m\varepsilon^2}.$$
 (1)

Let us now consider a predictor $h \colon \mathcal{X} \to \mathcal{Y}$, and a loss $\ell(y,y')$. The risk of the predictor is denoted by R(h) and its empirical risk on a test set $\mathcal{T}^m = \{(x^j,y^j) \mid j=1,\ldots,m\}$ is denoted by $R_{\mathcal{T}^m}(h)$. Apply (1) to obtain the Chebyshev inequality for empirical risk in the lecture 2 slide 5.

Assignment 2 (Hoeffding). Next we prove the Hoeffding inequality for the empirical risk. Let X_i , $i=1,\ldots,m$ be independent random variables bounded by the interval [a,b], i.e. $a \leqslant X_i \leqslant b$. Let $\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i$ be their empirical mean. The Hoeffding inequality asserts that

$$\mathbb{P}(|\bar{X} - \mathbb{E}\bar{X}| > \varepsilon) \le 2 \exp\left(-\frac{2m\varepsilon^2}{(b-a)^2}\right).$$

As in the previous assignment, let us now consider a predictor $h \colon \mathcal{X} \to \mathcal{Y}$, and a loss $\ell(y,y')$. The risk of the predictor is denoted by R(h) and its empirical risk on a test set $\mathcal{T}^m = \left\{ (x^j,y^j) \mid j=1,\ldots,m \right\}$ is denoted by $R_{\mathcal{T}^m}(h)$.

a) Prove that the generalisation error of h can be bounded in probability by

$$\mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < 2e^{-\frac{2m\varepsilon^2}{(\triangle \ell)^2}},\tag{2}$$

where $\triangle \ell = \ell_{max} - \ell_{min}$.

- **b)** Verify the value m given in Example 1 of Lecture 2. for the special case of a binary classifier and the 0/1-loss.
- \mathbf{c}^*) We want to utilise the Hoeffding inequality for choosing the best predictor from a finite set of predictors \mathcal{H} . Denoting the r.h.s. of (2) by δ , we interpret it as follows. Among all possible test sets \mathcal{T}^m of size m there are at most $\delta * 100$ percent "bad" test sets for a given predictor h. We call a test set \mathcal{T}^m bad for the predictor h if $|R(h) R_{\mathcal{T}^m}(h)| > \varepsilon$.

Conclude that the percentage of test sets, which are bad for at least one $h \in \mathcal{H}$ can be bounded by

$$\mathbb{P}\left(\max_{h\in\mathcal{H}}|R(h)-R_{\mathcal{T}^m}(h)|>\varepsilon\right)<2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\triangle\ell)^2}}$$

Assignment 3 (Log Softmax). Consider a neural network with outputs y_k , k = 1, ..., K representing posterior class probabilities. The last layer of this network is a softmax layer with output

$$y_k = \frac{e^{x_k}}{\sum_{\ell} e^{x_{\ell}}},$$

where x_k are the outputs of the last linear layer and represent class scores. When learning such a network by maximising the log conditional likelihood, we have to consider log-probabilities

$$z_k = \log y_k = x_k - \log \sum_{\ell} e^{x_\ell}$$

We will analyze the nonlinear part of the r.h.s., the log-sum-exp (aka smooth maximum) function:

$$f(x) = \log \sum_{\ell} e^{x_{\ell}} \tag{3}$$

- a) Prove that its gradient is given by $\nabla f(x) = y = \operatorname{softmax}(x)$, i.e. by the vector of class probabilities. Conclude that the norm of the gradient is bounded by 1. This is a good property for gradient-based optimization.
- **b)** Compute the second derivative of f and show that it can be expressed as

$$\nabla^2 f(x) = \text{Diag}(y) - yy^T.$$

Prove that this symmetric matrix is positive semi-definite and conclude that f(x) is a convex function. Note that the second derivative of log-sum-exp is the Jacobian of softmax.

Assignment 4 (Backprop). Given an operation with the output y and the derivative of the loss w.r.t. y – a row vector J_y , the "backprop" operation needs to compute derivatives w.r.t. all inputs. Compute the backprop of the following operations:

- a) y = |x|, where the absolute value is applied coordinate-wise to a vector x.
- **b)** y = x + z
- c) y = (x; z) the concatenated vector of x and z
- **d)** Convolution in 1D: $y_i = \sum_k w_k x_{i-k} + b_i$. The inputs are: w, x, b. Ignore the index ranges for simplicity.