DEEP LEARNING (SS2022)
SEMINAR 4

Assignment 1 (Weight initialization for ReLU networks). In this assignment we derive a
proper weight initialization for ReLU networks. We will assume that the components of
all vectors are statistically independent and identically distributed.

a) Let us consider a single neuron with weight vector w and input vector z. Its pre-
activation is @ = w’ z. Let us denote

E[z;] = i, E[z7] = x, E[w] = 0, and V]w;] = v.
prove that E[a] = 0 and V[a] = nvy, where n is the dimension of the vectors = and w.
b) Show that the distribution of a is symmetric if so is the distribution of w.

¢) Consider the neuron output y = g(a), where g denotes the ReLU function. Conclude
that E[y?] = 1V[a].
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d) Let us denote V[a| = « and consider a ReLU network with layers & = 1,...,m.
Collecting the previous steps we get the following recursive relation for the oy

O = ZNEp—1V0K—1
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and obtain the initialisation proposed by He et al. (2015): initialise the weights with zero

mean and variance 5

Nk—1

V{wk] =
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Assignment 2 (Batch Normalization). Batch normalization after a linear layer with a

weight matrix W and bias b takes the form:

Wz +b— g
OB

B+, 6]

where 15 and o denote the mean and standard deviation of the layer output a = Wax + b
taken over a batch.

a) Show that the output of batch normalization does not depend on the bias b and also
does not change when the weight matrix W is scaled by a positive constant.

b) What is the mean and standard deviation of the BN-normalized layer, if we initialize
B = 1,7 = 0?7 Assume, we decided to apply BN after each linear layer. Has the weight
initialization from Assignment 1 still an effect for the forward pass?

¢) Consider a network without BN. Let y5 and o3 be the statistics of layer output a =
Wax + b. We want to introduce a BN layer at this place so that it does not change the
network predictions. How shall we initialize 5 and ~?
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Assignment 3 (SGD + L2). Consider a regularized loss function L(6) = L(6) + 3|0||.
Let g be a stochastic gradient estimate of L at §. Notice that the regularization part of the
objective, %H0H2, is known in a closed form and so its gradient g, is non-stochastic.

e Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to g,..

e [s it equivalent to an SGD with the momentum applied to both g and g, but possibly
with a different settings of A, momentum and learning rate?

Assignment 4 (Mixup). The mixup data augmentation draws (z1, ;) and (x5, yo) at ran-
dom from data distribution p*, where y; and y, are one-hot encoded target labels, and
constructs
i’)\ = /\l’l + (1 - )\)1’2 (2a)
Gr = Ayi+ (1= Ny (2b)

The value of A is drawn at random from Beta distribution Be(a, a) with « fixed (e.g.,
0.1). The training objective is the expected loss over all such mixup examples:

E (21 51)~p* B(aa o) p EanBe(aa) (T, T2, (3)

where [(x, y) is the loss function of neural network predictions with input = with respect
to the target y. We will show that in the case of cross-entropy loss [, this it can be refor-
mulated without using ¥, i.e., not mixing labels. Therefore, even unlabeled data may be
used for x5 in the reformulation.

a) Show that the expected mixup loss (3) equals

Q]E(xl,y1)~p*E(mg)wp*E)\wBe(a,a) Al (‘%)\7 ?/1) (4)
Hint: you will need:
- Linearity of the cross-entropy function to show that [(x, y) is linear in y;
- Symmetry of Beta distribution: A ~ Be(a, a) = (1 — \) ~ Be(a, av);

- Symmetry of the expected loss with respect to swapping (renaming) (1, y;) and (2, o).

b) Prove that 2Apge(a,q)(A) = PBe(a+1,0)(A) and use it to simplify the result. Hint: you
will need:

- Density of Beta distribution: ppe(a,g) () = A*1(1 — )‘)B_IFF(ESF(@);

- One of the defining properties of Gamma function: I'(av + 1) = al'(«).




