
DEEP LEARNING (SS2022)
SEMINAR 4

Assignment 1 (Weight initialization for ReLU networks). In this assignment we derive a
proper weight initialization for ReLU networks. We will assume that the components of
all vectors are statistically independent and identically distributed.

a) Let us consider a single neuron with weight vector w and input vector x. Its pre-
activation is a = wTx. Let us denote

E[xi] = µ, E[x2
i ] = χ, E[wi] = 0, and V[wi] = v.

prove that E[a] = 0 and V[a] = nvχ, where n is the dimension of the vectors x and w.

b) Show that the distribution of a is symmetric if so is the distribution of w.

c) Consider the neuron output y = g(a), where g denotes the ReLU function. Conclude
that E[y2] = 1

2
V[a].

d) Let us denote V[a] = α and consider a ReLU network with layers k = 1, . . . ,m.
Collecting the previous steps we get the following recursive relation for the αk

αk =
1

2
nk−1vkαk−1

and obtain the initialisation proposed by He et al. (2015): initialise the weights with zero
mean and variance

V[wkij] =
2

nk−1

.

Assignment 2 (Batch Normalization). Batch normalization after a linear layer with a
weight matrix W and bias b takes the form:

Wx+ b− µB
σB

β + γ, (1)

where µB and σB denote the mean and standard deviation of the layer output a = Wx+ b
taken over a batch.

a) Show that the output of batch normalization does not depend on the bias b and also
does not change when the weight matrix W is scaled by a positive constant.

b) What is the mean and standard deviation of the BN-normalized layer, if we initialize
β = 1, γ = 0? Assume, we decided to apply BN after each linear layer. Has the weight
initialization from Assignment 1 still an effect for the forward pass?

c) Consider a network without BN. Let µB and σB be the statistics of layer output a =
Wx + b. We want to introduce a BN layer at this place so that it does not change the
network predictions. How shall we initialize β and γ?
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Assignment 3 (SGD + L2). Consider a regularized loss function L̃(θ) = L(θ) + λ
2
‖θ‖2.

Let g be a stochastic gradient estimate of L at θ. Notice that the regularization part of the
objective, λ

2
‖θ‖2, is known in a closed form and so its gradient gr is non-stochastic.

• Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to gr.

• Is it equivalent to an SGD with the momentum applied to both g and gr but possibly
with a different settings of λ, momentum and learning rate?

Assignment 4 (Mixup). The mixup data augmentation draws (x1, y1) and (x2, y2) at ran-
dom from data distribution p∗, where y1 and y2 are one-hot encoded target labels, and
constructs

x̃λ = λx1 + (1− λ)x2 (2a)
ỹλ = λy1 + (1− λ)y2. (2b)

The value of λ is drawn at random from Beta distribution Be(α, α) with α fixed (e.g.,
0.1). The training objective is the expected loss over all such mixup examples:

E(x1,y1)∼p∗E(x2,y2)∼p∗Eλ∼Be(α,α)l(x̃λ, ỹλ), (3)

where l(x, y) is the loss function of neural network predictions with input x with respect
to the target y. We will show that in the case of cross-entropy loss l, this it can be refor-
mulated without using y2, i.e., not mixing labels. Therefore, even unlabeled data may be
used for x2 in the reformulation.

a) Show that the expected mixup loss (3) equals

2E(x1,y1)∼p∗E(x2)∼p∗Eλ∼Be(α,α)λl(x̃λ, y1). (4)

Hint: you will need:

- Linearity of the cross-entropy function to show that l(x, y) is linear in y;

- Symmetry of Beta distribution: λ ∼ Be(α, α)⇒ (1− λ) ∼ Be(α, α);

- Symmetry of the expected loss with respect to swapping (renaming) (x1, y1) and (x2, y2).

b) Prove that 2λpBe(α,α)(λ) = pBe(α+1,α)(λ) and use it to simplify the result. Hint: you
will need:

- Density of Beta distribution: pBe(α,β)(λ) = λα−1(1− λ)β−1 Γ(α+β)
Γ(α)Γ(β)

;

- One of the defining properties of Gamma function: Γ(α + 1) = αΓ(α).
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