## Deep Learning: Assignments with Solutions

Assignment 1 (Gradient Verification in Lab 2). Let $\mathcal{L}$ be the loss function, depending on the parameter $w$ and let $J=\frac{\mathrm{d} \mathcal{L}}{\mathrm{d} w}$ be the derivative of $\mathcal{L}$ in $w$.
a) Let $\Delta w$ be a (random) vector of length $\varepsilon$ and $\Delta \mathcal{L}=\mathcal{L}(w+\Delta w)-\mathcal{L}(w)$. Show that the (correctly computed) derivative must satisfy

$$
\begin{equation*}
|\Delta \mathcal{L}-\langle J, \Delta w\rangle| \ll \varepsilon . \tag{1}
\end{equation*}
$$

b) Assume that $\mathcal{L}$ is twice differentiable and let $\Delta \mathcal{L}=\frac{1}{2}(\mathcal{L}(w+\Delta w)-\mathcal{L}(w-\Delta w))$. Show that the derivative in this case must satisfy even a stronger condition

$$
\begin{equation*}
|\Delta \mathcal{L}-\langle J, \Delta w\rangle| \ll \varepsilon^{2} \tag{2}
\end{equation*}
$$

Conclude that this condition is easier to check with limited numerical accuracy.

## Solution.

a) By definition of derivative, there must hold

$$
\begin{equation*}
\mathcal{L}(w+\Delta w)=\mathcal{L}(w)+J \Delta w+o(\|\Delta w\|) . \tag{3}
\end{equation*}
$$

Since $\mathcal{L}$ is a scalar-valued function $J$ is a row vector and $J \Delta w=\langle J, \Delta w\rangle$. We can express

$$
\begin{equation*}
\langle J, \Delta w\rangle=\mathcal{L}(w+\Delta w)-\mathcal{L}(w)+o(\|\Delta w\|) . \tag{4}
\end{equation*}
$$

Denoting $\Delta \mathcal{L}=\mathcal{L}(w+\Delta w)-\mathcal{L}(w)$ (as in the assignment), there must hold

$$
\begin{equation*}
|\langle J, \Delta w\rangle-\Delta \mathcal{L}|=o(\|\Delta w\|)=o(\varepsilon) \tag{5}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
|\langle J, \Delta w\rangle-\Delta \mathcal{L}| \ll \varepsilon . \tag{6}
\end{equation*}
$$

b) Since $\mathcal{L}$ is twice differentiable, we can write its second order Taylor expansion about $w$ :

$$
\begin{equation*}
\mathcal{L}(w+\Delta w)=\mathcal{L}(w)+\langle J, \Delta w\rangle+\frac{1}{2}\langle\Delta w, H \Delta w\rangle+o\left(\|\Delta w\|^{2}\right) \tag{7}
\end{equation*}
$$

where $H$ is the Hessian matrix. Consider now the displacement $-\Delta w$, the second order expansion for it reads:

$$
\begin{equation*}
\mathcal{L}(w-\Delta w)=\mathcal{L}(w)-\langle J, \Delta w\rangle+\frac{1}{2}\langle\Delta w, H \Delta w\rangle+o\left(\|\Delta w\|^{2}\right) \tag{8}
\end{equation*}
$$

Note that the sign of quadratic form $\langle\Delta w, H \Delta w\rangle$ has not changed. Subtracting these two expansions we obtain:

$$
\begin{equation*}
\mathcal{L}(w+\Delta w)-\mathcal{L}(w-\Delta w)=2\langle J, \Delta w\rangle+o\left(\|\Delta w\|^{2}\right) \tag{9}
\end{equation*}
$$

Rearranging and denoting $\Delta \mathcal{L}=\frac{1}{2}(\mathcal{L}(w+\Delta w)-\mathcal{L}(w-\Delta w))$, we obtain

$$
\begin{equation*}
(\langle J, \Delta w\rangle-\Delta \mathcal{L})=o\left(\|\Delta w\|^{2}\right) \tag{10}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
|\langle J, \Delta w\rangle-\Delta \mathcal{L}| \ll \varepsilon^{2} . \tag{11}
\end{equation*}
$$

Assignment 2 (Backprop normalized linear).
Let $x \in \mathbb{R}^{n}$. Consider the following normalized linear layer (known as "weight normalization"):

$$
y_{i}=\frac{w_{i}^{\top} x+b_{i}}{\left\|w_{i}\right\|}
$$

where $w_{i} \in \mathbb{R}^{n}$ for $i=1 \ldots m, b_{i} \in \mathbb{R}$ and $\left\|w_{i}\right\|$ is the Euclidean norm of vector $w_{i}$. Given the gradient of the loss function in $y, g:=\nabla_{y} \mathcal{L} \in \mathbb{R}^{m}$, compute gradients of the loss in $w, b, x$.

Solution. We will use the total derivative rule

$$
\begin{equation*}
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} \theta}=\sum_{i} \frac{\mathrm{~d} \mathcal{L}}{\mathrm{~d} y_{i}} \frac{\partial y_{i}}{\partial \theta}=\sum_{i} g_{i} \frac{\partial y_{i}}{\partial \theta} . \tag{12}
\end{equation*}
$$

Since $y_{i}$ depends only on $b_{i}$ and not on $b_{j}$ for $j \neq i$ for $\nabla_{b} \mathcal{L}$ we have

$$
\begin{equation*}
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} b_{i}}=g_{i} \frac{\partial y_{i}}{\partial b_{i}}=\frac{g_{i}}{\left\|w_{i}\right\|} \tag{13}
\end{equation*}
$$

For $\nabla_{x} \mathcal{L}$ we have

$$
\begin{equation*}
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} x_{j}}=\sum_{i} g_{i} \frac{\partial y_{i}}{\partial x_{j}}=\sum_{i} g_{i} \frac{w_{i j}}{\left\|w_{i}\right\|} \tag{14}
\end{equation*}
$$

Since $y_{i}$ depends only on $w_{i}$ and not on $w_{j}$ for $j \neq i$ for $\nabla_{w} \mathcal{L}$ we have

$$
\begin{equation*}
\frac{\mathrm{d} L}{\mathrm{~d} w_{i}}=\sum_{i} g_{i} \frac{\partial y_{i}}{\partial w_{i}}=\sum_{i} g_{i}\left(\frac{x}{\left\|w_{i}\right\|}+\left(w_{i}^{\top} x+b_{i}\right) \frac{-w_{i}}{\left\|w_{i}\right\|^{3}}\right) . \tag{15}
\end{equation*}
$$

Assignment 3 (Backprop recurrent sequence).
Let $x \in \mathbb{R}^{N}$ be a vector with components $x_{i}$ for $i=1, \ldots N$ and consider a layer performing the following computation:

$$
\begin{equation*}
y_{i}=a\left(x_{i}+x_{i+2}\right)+b \quad \text { for } i=1 \ldots N-2 . \tag{16}
\end{equation*}
$$

Given the gradient of the loss function in $y, g:=\nabla_{y} \mathcal{L} \in \mathbb{R}^{N-2}$, compute the gradient of the loss in $a, b$ and $x$.

Solution.

$$
\begin{align*}
& \frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} b}=\sum_{i=1}^{N-2} \frac{\mathrm{~d} \mathcal{L}}{\mathrm{~d} y_{i}} \frac{\partial y_{i}}{\partial b}=\sum_{i=1}^{N-2} \frac{\partial \mathcal{L}}{\partial y_{i}}=\sum_{i=1}^{N-2} g_{i} .  \tag{17}\\
& \frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} a}=\sum_{i=1}^{N-2} \frac{\mathrm{~d} \mathcal{L}}{\mathrm{~d} y_{i}} \frac{\partial y_{i}}{\partial a}=\sum_{i=1}^{N-2} g_{i}\left(x_{i}+x_{i+2}\right) . \tag{18}
\end{align*}
$$

$$
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} x_{j}}=\sum_{i=1}^{N-2} g_{i} \frac{\partial y_{i}}{\partial x_{j}}=\sum_{i=1}^{N-2} g_{i} a(\llbracket j=i \rrbracket+\llbracket j=i+2 \rrbracket)= \begin{cases}a g_{j} & \text { if } j \leq 2,  \tag{19}\\ a\left(g_{j}+g_{j-2}\right) & \text { if } j=2, \ldots N-2, \\ a g_{j-2} & \text { if } j \geq N-2\end{cases}
$$

Assignment 4 (Stochastic Gradient Quantization). Sometimes randomized procedures are used to quantize the gradients for a faster communication in a distributed system (if we want to parallelize training).
Let the gradient $g \in \mathbb{R}^{n}$ be computed at the worker. The worker can sends a quantized gradient $\tilde{g} \in\{0,1\}^{n}$ to the server, using only 1 bit per coordinate. The worker additionally sends two real numbers to the server $a, b$ and the server reconstructs the gradient as $a \tilde{g}+b$. How to chose the quantization procedure in a randomized way so that $\mathbb{E}[a \tilde{g}+b]=g$ and hence we preserve the guarantee of an unbiased (but more noisy) gradient estimate? Is the choice of $a$ and $b$ satisfying this assumption unique? How to choose $a$ and $b$ such that $\mathbb{E}[a \tilde{g}+b]=g$ and the variance of $a \tilde{g}+b$ is minimal?

Solution. Clearly, given $g_{i}$, with a deterministic choice of $\tilde{g}_{i} \in\{0,1\}$ we cannot achieve the property $\mathbb{E}[a \tilde{g}+b]=g$ for all coordinates and would have a systematic error. Let us choose $\tilde{g}_{i} \in\{0,1\}$ at random, with probability $\mathbb{P}\left(\tilde{g}_{i}=1\right)=\beta_{i}$. We then have $\mathbb{E}\left[a \tilde{g}_{i}+b\right]=$ $a \beta_{i}+b$ and can make all coordinates unbiased by setting

$$
\begin{equation*}
\beta_{i}=\frac{g_{i}-b}{a} \tag{20}
\end{equation*}
$$

however the probabilities $\beta_{i}$ need to be in the range $[0,1]$ and therefore $a$ and $b$ must satisfy

$$
\begin{equation*}
0 \leq \frac{g_{i}-b}{a} \leq 1 \forall i \tag{21}
\end{equation*}
$$

Assuming that $a>0$, it is equivalent to

$$
\begin{equation*}
b \leq g_{i} \leq a+b \forall i \tag{22}
\end{equation*}
$$

The choice of $a$ and $b$ is clearly non-unique: as long as $b \leq \min _{i} g_{i}=: m$ and $a+b \geq$ $\max _{i} g_{i}=: M$, we can satisfy the expectation requirement.

Let us determine $a$ and $b$ that give the least variance to the estimate $a \tilde{g}_{i}+b$ for some fixed $i$. The variance of a Bernoulli variable with probability $\beta_{i}$ is given by $\beta_{i}\left(1-\beta_{i}\right)$. The variance of $a \tilde{g}_{i}+b$ is respectively

$$
\begin{equation*}
a^{2}\left(\frac{g_{i}-b}{a}\right)\left(1-\frac{g_{i}-b}{a}\right)=\left(g_{i}-b\right)\left(a+b-g_{i}\right) . \tag{23}
\end{equation*}
$$

To minimize this variance subject to the constraints on $a$ and $b$ we need to solve the problem

$$
\begin{equation*}
\min _{a, b}\left(g_{i}-b\right)\left(a+b-g_{i}\right) \quad \text { s.t. } \quad b \leq m ; a+b \geq M \tag{24}
\end{equation*}
$$

Notice that in the objective both $\left(g_{i}-b\right)$ and $\left(a+b-g_{i}\right)$ are non-negative when constraints are satisfied. The first factor is minimized by choosing $b=m$. The second factor is minimized by choosing $a=M-b=M-m$. Notice that this solution does not depend on the particular coordinate $i$. Therefore variances of all components of the gradient are simultaneously minimized by this choice of $a$ and $b$.

Assignment 5 (SGD + L2). Consider a regularized loss function $\tilde{L}(\theta)=L(\theta)+\frac{\lambda}{2}\|\theta\|^{2}$. Let $\tilde{g}$ be a stochastic gradient estimate of $L$ at $\theta$. Note that the regularization part of the objective, $\frac{\lambda}{2}\|\theta\|^{2}$, is known in a closed form and so its gradient $g_{r}$ is non-stochastic.
a) Design an SGD algorithm that applies momentum (exponentially weighted averaging) to $g$ only but not to $g_{r}$.
b) Is it equivalent to an SGD with the momentum applied to both $g$ and $g_{r}$ but possibly with a different settings of $\lambda$, momentum and learning rate?

## Solution.

a) The gradient of the regularizer at $\theta^{t}$ is given by $g_{r}=\lambda \theta^{t}$. Let $\tilde{g}^{t}$ be stochastic gradient of $L(\theta)$ at $\theta^{t}: \tilde{g}^{t}=\hat{\nabla}_{\theta} L\left(\theta^{t}\right)$. We will use the momentum form of SGD with EWA (lecture 4):

$$
\begin{align*}
& v^{t}=\mu v^{t-1}+\tilde{g}^{t}  \tag{25a}\\
& \theta^{t+1}=\theta^{t}-\alpha\left(v^{t}+\lambda \theta^{t}\right) \tag{25b}
\end{align*}
$$

where $\alpha$ is the learning rate and $\mu$ is momentum.
b) If we apply the momentum to both $\tilde{g}$ and $g_{r}$, we obtain a seemingly different algorithm:

$$
\begin{align*}
& v^{\prime t}=\mu^{\prime} v^{t-1}+\tilde{g}^{t}+\lambda^{\prime} \theta^{t}  \tag{26a}\\
& \theta^{t+1}=\theta^{t}-\alpha^{\prime} v^{\prime t} \tag{26b}
\end{align*}
$$

The question is whether the first algorithm can be converted into the second one by choosing $\lambda^{\prime}, \alpha^{\prime}, \mu^{\prime}$ appropriately. To verify this, we will reduce each algorithm to a recurrent relation in main sequence $\theta^{t}$ only. In the algorithm (25) we have for two time steps:

$$
\begin{align*}
\theta^{t+1} & =\theta^{t}-\alpha\left(v^{t}+\lambda \theta^{t}\right)  \tag{27a}\\
\theta^{t} & =\theta^{t-1}-\alpha\left(v^{t-1}+\lambda \theta^{t-1}\right) . \tag{27b}
\end{align*}
$$

Multiplying the second equation by $\mu$ and subtracting from the first we obtain

$$
\begin{equation*}
\theta^{t+1}-\mu \theta^{t}=\theta^{t}-\mu \theta^{t-1}-\alpha\left(\tilde{g}^{t}+\lambda \theta^{t}-\mu \lambda \theta^{t-1}\right) . \tag{28}
\end{equation*}
$$

Rearranging we get the recurrence:

$$
\begin{equation*}
\theta^{t+1}=(1+\mu-\alpha \lambda) \theta^{t}-\mu(1-\alpha \lambda) \theta^{t-1}-\alpha \tilde{g}^{t} \tag{29}
\end{equation*}
$$

Similarly, in algorithm (26) two time steps express as:

$$
\begin{align*}
\theta^{t+1} & =\theta^{t}-\alpha^{\prime} v^{\prime t}  \tag{30a}\\
\theta^{t} & =\theta^{t-1}-\alpha^{\prime} v^{\prime t-1} . \tag{30b}
\end{align*}
$$

Multiplying the second equation by $\mu^{\prime}$ and subtracting from the first we obtain

$$
\begin{equation*}
\theta^{t+1}-\mu^{\prime} \theta^{t}=\theta^{t}-\mu^{\prime} \theta^{t-1}-\alpha^{\prime}\left(\tilde{g}^{t}+\lambda^{\prime} \theta^{t}\right) . \tag{31}
\end{equation*}
$$

Rearranging we get the recurrence:

$$
\begin{equation*}
\theta^{t+1}=\left(1+\mu^{\prime}-\alpha^{\prime} \lambda^{\prime}\right) \theta^{t}-\mu^{\prime} \theta^{t-1}-\alpha^{\prime} \tilde{g}^{t} \tag{32}
\end{equation*}
$$

The two recurrent sequences $\theta^{t}$ can be made equal by equating the coefficients at $\theta^{t}, \theta^{t-1}$ and $\tilde{g}^{t}$. We get three equations in three unknowns $\lambda^{\prime}, \mu^{\prime}, \alpha^{\prime}$ :

$$
\begin{align*}
& 1+\mu^{\prime}-\alpha^{\prime} \lambda^{\prime}=1+\mu-\alpha \lambda,  \tag{33a}\\
& \mu^{\prime}=\mu(1-\alpha \lambda)  \tag{33b}\\
& \alpha^{\prime}=\alpha . \tag{33c}
\end{align*}
$$

We trivially find $\alpha^{\prime}$ and $\mu^{\prime}$, and solve for $\lambda^{\prime}$ from the first equation:

$$
\begin{equation*}
\lambda^{\prime}=\left(\mu^{\prime}-\mu+\alpha \lambda\right) / \alpha^{\prime}=(\mu+\mu \alpha \lambda-\mu+\alpha \lambda) / \alpha=\mu \lambda+\lambda=(\mu+1) \lambda . \tag{34}
\end{equation*}
$$

We obtained that the two algorithms are equivalent up to changing the regularization strength only. If we used EWA form (with $q$ and $1-q$ ), the equivalence can be shown by the same method.

