
DEEP LEARNING: ASSIGNMENTS WITH SOLUTIONS

Assignment 1 (Gradient Verification in Lab 2). Let L be the loss function, depending on
the parameter w and let J = dL

dw
be the derivative of L in w.

a) Let ∆w be a (random) vector of length ε and ∆L = L(w + ∆w) − L(w). Show that
the (correctly computed) derivative must satisfy∣∣∆L − 〈J,∆w〉∣∣� ε. (1)

b) Assume that L is twice differentiable and let ∆L = 1
2
(L(w + ∆w) − L(w − ∆w)).

Show that the derivative in this case must satisfy even a stronger condition∣∣∆L − 〈J,∆w〉∣∣� ε2. (2)

Conclude that this condition is easier to check with limited numerical accuracy.

Solution.

a) By definition of derivative, there must hold

L(w + ∆w) = L(w) + J∆w + o(‖∆w‖). (3)

Since L is a scalar-valued function J is a row vector and J∆w = 〈J,∆w〉. We can express

〈J,∆w〉 = L(w + ∆w)− L(w) + o(‖∆w‖). (4)

Denoting ∆L = L(w + ∆w)− L(w) (as in the assignment), there must hold

|〈J,∆w〉 −∆L| = o(‖∆w‖) = o(ε), (5)

which is equivalent to

|〈J,∆w〉 −∆L| � ε. (6)

b) Since L is twice differentiable, we can write its second order Taylor expansion about
w:

L(w + ∆w) = L(w) + 〈J,∆w〉+
1

2
〈∆w,H∆w〉+ o(‖∆w‖2), (7)

where H is the Hessian matrix. Consider now the displacement −∆w, the second order
expansion for it reads:

L(w −∆w) = L(w)− 〈J,∆w〉+
1

2
〈∆w,H∆w〉+ o(‖∆w‖2). (8)

Note that the sign of quadratic form 〈∆w,H∆w〉 has not changed. Subtracting these two
expansions we obtain:

L(w + ∆w)− L(w −∆w) = 2〈J,∆w〉+ o(‖∆w‖2). (9)
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Rearranging and denoting ∆L = 1
2
(L(w + ∆w)− L(w −∆w)), we obtain

(〈J,∆w〉 −∆L) = o(‖∆w‖2), (10)

which is equivalent to ∣∣〈J,∆w〉 −∆L
∣∣� ε2. (11)

Assignment 2 (Backprop normalized linear).
Let x ∈ Rn. Consider the following normalized linear layer (known as “weight normal-
ization”):

yi =
wT
i x+ bi
‖wi‖

,

where wi ∈ Rn for i = 1 . . .m, bi ∈ R and ‖wi‖ is the Euclidean norm of vector wi.
Given the gradient of the loss function in y, g := ∇yL ∈ Rm, compute gradients of the
loss in w, b, x.

Solution. We will use the total derivative rule
dL
dθ

=
∑
i

dL
dyi

∂yi
∂θ

=
∑
i

gi
∂yi
∂θ

. (12)

Since yi depends only on bi and not on bj for j 6= i for ∇bL we have

dL
dbi

= gi
∂yi
∂bi

=
gi
‖wi‖

. (13)

For ∇xL we have

dL
dxj

=
∑
i

gi
∂yi
∂xj

=
∑
i

gi
wij
‖wi‖

. (14)

Since yi depends only on wi and not on wj for j 6= i for∇wL we have

dL

dwi
=
∑
i

gi
∂yi
∂wi

=
∑
i

gi

( x

‖wi‖
+ (wT

i x+ bi)
−wi
‖wi‖3

)
. (15)

Assignment 3 (Backprop recurrent sequence).
Let x ∈ RN be a vector with components xi for i = 1, . . . N and consider a layer per-
forming the following computation:

yi = a(xi + xi+2) + b for i = 1 . . . N − 2. (16)

Given the gradient of the loss function in y, g := ∇yL ∈ RN−2, compute the gradient of
the loss in a, b and x.
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Solution.

dL
db

=
N−2∑
i=1

dL
dyi

∂yi
∂b

=
N−2∑
i=1

∂L
∂yi

=
N−2∑
i=1

gi. (17)

dL
da

=
N−2∑
i=1

dL
dyi

∂yi
∂a

=
N−2∑
i=1

gi(xi + xi+2). (18)

dL
dxj

=
N−2∑
i=1

gi
∂yi
∂xj

=
N−2∑
i=1

gia
(
Jj=iK + Jj=i+2K

)
=


agj if j ≤ 2,

a(gj + gj−2) if j = 2, . . . N − 2,

agj−2 if j ≥ N − 2.

(19)

Assignment 4 (Stochastic Gradient Quantization). Sometimes randomized procedures
are used to quantize the gradients for a faster communication in a distributed system (if
we want to parallelize training).
Let the gradient g ∈ Rn be computed at the worker. The worker can sends a quantized
gradient g̃ ∈ {0, 1}n to the server, using only 1 bit per coordinate. The worker additionally
sends two real numbers to the server a, b and the server reconstructs the gradient as ag̃+b.
How to chose the quantization procedure in a randomized way so that E[ag̃ + b] = g and
hence we preserve the guarantee of an unbiased (but more noisy) gradient estimate? Is
the choice of a and b satisfying this assumption unique? How to choose a and b such that
E[ag̃ + b] = g and the variance of ag̃ + b is minimal?

Solution. Clearly, given gi, with a deterministic choice of g̃i ∈ {0, 1} we cannot achieve
the property E[ag̃ + b] = g for all coordinates and would have a systematic error. Let us
choose g̃i ∈ {0, 1} at random, with probability P(g̃i=1) = βi. We then have E[ag̃i + b] =
aβi + b and can make all coordinates unbiased by setting

βi =
gi − b
a

, (20)

however the probabilities βi need to be in the range [0, 1] and therefore a and b must
satisfy

0 ≤ gi − b
a
≤ 1 ∀i. (21)

Assuming that a > 0, it is equivalent to

b ≤ gi ≤ a+ b ∀i. (22)

The choice of a and bis clearly non-unique: as long as b ≤ mini gi =: m and a + b ≥
maxi gi =: M , we can satisfy the expectation requirement.
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Let us determine a and b that give the least variance to the estimate ag̃i + b for some fixed
i. The variance of a Bernoulli variable with probability βi is given by βi(1 − βi). The
variance of ag̃i + b is respectively

a2
(gi − b

a

)(
1− gi − b

a

)
= (gi − b)(a+ b− gi). (23)

To minimize this variance subject to the constraints on a and b we need to solve the
problem

min
a,b

(gi − b)(a+ b− gi) s.t. b ≤ m; a+ b ≥M. (24)

Notice that in the objective both (gi−b) and (a+b−gi) are non-negative when constraints
are satisfied. The first factor is minimized by choosing b = m. The second factor is
minimized by choosing a = M − b = M −m. Notice that this solution does not depend
on the particular coordinate i. Therefore variances of all components of the gradient are
simultaneously minimized by this choice of a and b.

Assignment 5 (SGD + L2). Consider a regularized loss function L̃(θ) = L(θ) + λ
2
‖θ‖2.

Let g̃ be a stochastic gradient estimate of L at θ. Note that the regularization part of the
objective, λ

2
‖θ‖2, is known in a closed form and so its gradient gr is non-stochastic.

a) Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to gr.

b) Is it equivalent to an SGD with the momentum applied to both g and gr but possibly
with a different settings of λ, momentum and learning rate?

Solution.

a) The gradient of the regularizer at θt is given by gr = λθt. Let g̃t be stochastic gradient
of L(θ) at θt: g̃t = ∇̂θL(θt). We will use the momentum form of SGD with EWA (lecture
4):

vt = µvt−1 + g̃t; (25a)
θt+1 = θt − α(vt + λθt), (25b)

where α is the learning rate and µ is momentum.

b) If we apply the momentum to both g̃ and gr, we obtain a seemingly different algorithm:

v′t = µ′vt−1 + g̃t + λ′θt; (26a)
θt+1 = θt − α′v′t. (26b)

The question is whether the first algorithm can be converted into the second one by choos-
ing λ′, α′, µ′ appropriately. To verify this, we will reduce each algorithm to a recurrent
relation in main sequence θt only. In the algorithm (25) we have for two time steps:

θt+1 = θt − α(vt + λθt); (27a)
θt = θt−1 − α(vt−1 + λθt−1). (27b)

4



Multiplying the second equation by µ and subtracting from the first we obtain

θt+1 − µθt = θt − µθt−1 − α(g̃t + λθt − µλθt−1). (28)

Rearranging we get the recurrence:

θt+1 = (1 + µ− αλ)θt − µ(1− αλ)θt−1 − αg̃t (29)

Similarly, in algorithm (26) two time steps express as:

θt+1 = θt − α′v′t; (30a)
θt = θt−1 − α′v′t−1. (30b)

Multiplying the second equation by µ′ and subtracting from the first we obtain

θt+1 − µ′θt = θt − µ′θt−1 − α′(g̃t + λ′θt). (31)

Rearranging we get the recurrence:

θt+1 = (1 + µ′ − α′λ′)θt − µ′θt−1 − α′g̃t. (32)

The two recurrent sequences θt can be made equal by equating the coefficients at θt, θt−1

and g̃t. We get three equations in three unknowns λ′, µ′, α′:

1 + µ′ − α′λ′ = 1 + µ− αλ, (33a)
µ′ = µ(1− αλ), (33b)
α′ = α. (33c)

We trivially find α′ and µ′, and solve for λ′ from the first equation:

λ′ = (µ′ − µ+ αλ)/α′ = (µ+ µαλ− µ+ αλ)/α = µλ+ λ = (µ+ 1)λ. (34)

We obtained that the two algorithms are equivalent up to changing the regularization
strength only. If we used EWA form (with q and 1− q), the equivalence can be shown by
the same method.
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