Deep Learning (BEV033DLE)
Lecture 5
Convolutional Neural Networks

Czech Technical University in Prague

4 Introduction, CNN for Classification
e Correlation filters, translation equivariance, convolution and cross-correlation
e Multi-channel, stride, 1x1
e Pooling, receptive field
4 More Kinds of Convolutions
e Dilation, transposed, ...

4 Hierarchy of Parts



CNN for Classification
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@ convolution+ ReLU

@ max pooling
fully connected+ReLLU

i [VGG network, Image: Davi Frossard]

4+ We will go step-by-step though this diagram
4 Understand its design principles

4 Consider everything about convolutions in more detail



https://www.cs.toronto.edu/frossard/post/vgg16/

Classification CNN
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l / channels features
224 %224 x3 224 x 224 x 64
Adaptive pooling

112 x 128

56lx 56 % 256
28x28x512 !_;f2><7><512
R Ay 1x1x4096 1x1x1000

.............

- 4

@ convolution+ReLLU

@ max pooling
fully connected+ReLLU
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Result of conv(K x K, 3—64) followed by RelLU




Big Picture: ImageNet Classification @
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4 The ImageNet Large Scale Visual Recognition Challenge (2010): 1000 classes, 1.4M images

4 Deep Learning Revolution
Top-b error rate
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Big Picture: ImageNet Classification @

4 Efficiency Matters
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TOP 5 ACCURACY

Big Picture: ImageNet Classification @ o

4 State of the Art (lamgeNet 14M images)
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Template

Image Quality of Match
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Translational equivariance idea: when the input shifts, the output shifts

e Would be hard to achieve if the image was given as a general vector — we are
using 2D grid structure and require that all locations are treated equally
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Basics @
¢ Convolution and Correlation (1D) 9
2 h ) h
e Convolution Yy=wkr Y= ., WETj g|= D, W_pTjik
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h . . .
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Easily convertible, more convenient to consider cross-correlation in Deep Learning
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Examples (Cross-Correlation)
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Examples (Cross-Correlation)

Input

Kernel

Output

—

T

11

Blur

Motion Blur



Examples (Cross-Correlation)
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Motion Blur

Edge detector
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Properties @

¢ Cross—Cor}EeIation: 13
® Yi= ), WipTitk
k=—h Correlation (valid)
¢ As matrix-vector product: y; = Zj Wj_iTj = Zj Wiz, W
e Relation: y=1+k=k=7—1 —
e Compact representation of certain linear transforms .
e Everything that applies to linear transforms applies to i x
convolution and cross-correlation .
¢ Valid range for i: —
0<i<n=0<i—h,1+h<n=>h<i<n—nh.
e Optionally may pad input with zeros to obtain same Known backprop
range as unpadded input ‘
. w
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valid range = Convolution (with padding)



Properties

As a binary operation y = w*x 14
e Everything that applies to linear operators, eg. associativity: u* (w*x) = (uxw) *x
e Commutativity for convolutions: w*x = T * w:
D WkTiof = )i TjWi—j
e No commutativity for cross-correlation. But uxwxxz =wxu*zx
Examples:
e edge_filter(blur(image)) = blur(edge_filter(image)) = (blur(edge_filter))(image)
e filter(translation(image)) = translation(filter(image))
equivariance w.r.t. translation
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When the image shifts, the output shifts
Great prior knowledge for learning

4 In fact, linearity + translation equivariance = convolution



First Convolutional Layer
4 Large filters are not very useful:
e Think of viewpoint changes, object deformations, variations within a category

e Small filters capture elementary, non task-specific, features

Gabor Filters - Mathematical model for V1 cells:

15



Multi-Channel Convolution ®

4 We just discussed:

e color input images -> convolution kernel needs to have 3 channels

e stack of filters -> channels of the output feature map

/ height height
I m uidth

channel channel

©® Multi-channel cross-correlation:

>4>4>4£B672+A27]+AJ wO,C,Ai,Aj — yO,’I:,j
At Aj
O \
' \

input channel filter spatial dimensions output channel

e input is 3D tensor, weight is 4D tensor, output is 3D tensor

e Essentially: a cross-correlation on spatial dims and fully connected on channel dims
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Classification CNN

Spatial size of the input image
l channels

/
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@ convolution+ReLU

@ max pooling
fully connected+ReLLU

“~1 softmax
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conv(3x3, 64—64)
Result of conv(K x K, 3—64) followed by RelLU

4 Eventually want to classify -> need to reduce spatial dimensions
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Pooling

4 Following approaches are used to reduce the spatial resolution: 18

e max pooling
e average pooling

e subsampling -> convolution with stride 13 | 23

max _ B
3 | 13 [Bazeid - 178

average 6 | 13 |
> | Inear
7 14 2 3 9 I2.5 ( )
1o 17 ] 4 '
subsample (linear)

4 max and average pooling are invariant to
permutations of responses within a cell

4 Once spacial resolution has been decreased, we
can afford to increase the number of channels




Convolution with Stnide @

4 Full convolution + subsampling is equivalent to calculating the 19
result at the required locations only, stepping with a stride

Stride 1 | T3 [Ta| @5 |

Y| Y1l Y21 Y| Ya| Ys

W
Stride2 : o | X1 | L2 | L3 | T4 | L5 : . "0
5 — = 5 _— o d _
" B B
I
" B B a’;
I
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Strid 3 : To| X1 | T2 | T3 | T4 | T5 :
Yo (931

All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Classification CNN @
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Reduced spatial size can afford more channels
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@ convolution+ReLU

@ max pooling
fully connected+ReLLU

“~~ softmax

........

conv(3x3, 64—128)

4 Combining convolutions and spatial pooling allows to aggregate information from a larger
area



Receptive Field @

21

4 Receptive Filed = pixels in the input which can contribute to the specific output

Input Image Conv 3x3 Conv 3x3 MaxPool 2x2

It

4 Small convolutions are not sufficient to create large enough receptive fields.
Example:

e \Want to classify images of size 256x256
e Each 3x3 convolution increases the receptive filed by 2 pixels
e \Would take 128 convolutional layers

4 Need pooling / strides / larger filters

4 Effective receptive filed (with non-negligible expected contribution) is usually smaller



Weight Kernel Sizes @
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¢ With pooling we reduced the size of feature maps. What about filter kernels?
e First layer: (7x 7, 3 — 64) ~ 10° — can afford large filter size
e Second layer: (3 x 3, 64 — 64) ~ 3-10* — small filter size preferable
e Layers with more channels: (3 x 3, 256 — 256) =~ 5-10° — become expensive
® Need further efficient parametrization techniques
e Depth-wise separable convolutions:
spatial convolution same for all channels composed with a general linear transform on
the channels (1x1 convolution)

e Something in between:
conv(K x K,5 — §) composed with conv(lx1,C — §5), S<C



1x1 Convolution @

¢ Kernel size 1x1:

23

Yo,i,j — SJ SJ SJ Wo,c,Ai,Aj Lc,i+Ai,j+Aj

c Ai=0Aj5=0
— : :w07c7070 xc7i7j
c

¢ For all 4,5 a linear transformation on channels with a matrix w, 0.0

channels

Example 3x3, 256—256,

vector of weights is too expensive, simplify:
per output channel

Input: WxHx256

conv(1x1,256 — 64)

conv(3x3,64 — 64)

conv(1x1,64 — 256)

l

Output: W'xH'x256

¢ Useful to perform operations along channels dimension:
e Increase /decrease number of channels

e Normalization operations

e |In combination with purely spatial convolution = separable transform



Classification CNN @
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224 x 224 x3 224 x 224 x64
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@ convolution+ReLU

@ max pooling
fully connected#ReLLU

~—1 softmax

 — .

Could use efficient module here 1x1 convolution for input of size 1x1

is equivalent to fully connected

4 Second last layer has 4096*4096 =16M parameters!



More Convolutions in DL



Deconvolution @
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Semantic Segmentation Architectures need unpooling / upsampling

Convolutional Encoder-Decoder

. Pooling Indices ‘

RGB Image B Conv + Batch Normalisation + RelU Segmentation
B Pooling  Upsampling Softmax

Input Output

We will look at up-sampling with “transposed” convolution (“deconvolution”)

Input image Ground-truth DeconvNet EDeconvNet EDeconvNet+CRF

[Noh et al. (2015) Learning Deconvolution Network for Semantic Segmentation]




Transposed Convolution

4 Deconvolution = Transposed strided convolution = backprop of strided convolution

Stride 2 Convolution

Stride 2 Deconvolution

Lo | L1 | L2 | L3 | L4 | Ts
Yo 0 Y2
X X1 )
- 1
Y| Y1 | Y2 | Ys | Ya | YUs .
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Sparse Convolutions @

4 Want to increase receptive field size 28

e without decreasing spatial resolution and having too many layers
e (Can increase kernel size, but it was also costly

e (Can use a sparse mask for the kernel

Dilated convolutions Can even learn sparse locations —
deformable convolutions
Output
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Many More Examples and Smart Architectures @

r
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Object Detectlon il
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Stereo Depth Estimation
]

Monocular Depth Estimation
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In Other Courses

4 Computer Vision Methods (BE4AM33MPV, Spring)

Lectures 1, 2: overview of vision architectures, examples

Lecture 9: deep retrieval

4 Vision for Robotics (B3B33VIR, Fall)

Lecture 6,8: (architectures)

Lecture 7: self-supervision, weak supervision
Lecture 9: Convolutions in 1D, 2D, 3D, graphs
Lecture 10, 11: Deep reinforcement learning

| ecture 12: Generative adversarial networks

30


https://cw.fel.cvut.cz/wiki/courses/mpv/start
https://cw.fel.cvut.cz/b201/courses/b3b33vir/start

Hierarchy of Parts, Self-organisation



Hierarch of Parts Phenomenon

4 In networks trained for different complex problems

e some intermediate layers activations correspond object parts

32



Hierarch of Parts Phenomenon @

4 In networks trained for different complex problems 33

® some intermediate layers activations correspond object parts

lamps in places net wheels in object net people in video net
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Computational Model of the Brain

4 Complex tasks build upon the

is there an
animal?

how big is
this object?

capabilities of simpler tasks .
visual

routines

where is the
boundary of
the object?

") Complex units
(O simple units

34



Parallels with Visual Cortex CAm ¢

4+ LGN:
no orientation preference .

space-time separable

Frontal lobe __m—— 35
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4 V1 packing in 2D problem:

location in the view (retinotopy)
orientation
ocular dominance

motion

4 feedback connections

Ocular dominan
ConNE 50000 neurons / mm?



