Deep Learning (BEV033DLE)
Lecture 3. Backpropagation

Czech Technical University in Prague

4 Theory and Intuition
® |inear approximation
e Derivative of compositions
4 Practice
e Forward / backward propagation

e Efficient implementation, computation graph

Derivative @ o

¢ Function f: R™ — R"™ (from domain R™ to codomain R")

¢ Local linear approximation: f(xo+ Ax) = f(xg) + JAx +o(||Az|)
® When such J exists, it is unique and called derivative

¢ Expressed in coordinates J is called the Jacobian (matrix) (at x): R? 5 R

(o5 o .. o5\ [Agy)

Ox1 Ox9 Oxm,
Ofs Ofs . Of Ao

2
f(CU—I—AZU) %f(lU)—F Oxy Oxo Oxm

T AV

% — speed of growth (slope) of f; along x; ;

4 Linear approximations form a closed class under:

e sum of linear functions is linear -- can approximate sum of log-likelihoods over many data
points

e composition of linear functions is linear -- can approximate a deep feed-forward network

Gradient

¢ Given scalar-valued function: £: R®* - R

24 -- - /
<N - - 1
\ -
u = e &

'ﬁm ” /
l N
/ { ///

L(xg+ Ax)

8£Ui

J is a row vector (of ...

1T =1V £l

:(l 1 o :; - R’I’L

® What is the steepest ascent direction to maximize the linear approximation?

max (f(z")+JAx)

¢ Gradient V[is the column vector of partial derivatives

¢ (Steepest) gradient descent: x

Azx: [|Az||o=1

t+1

=a'— eV, f (!

= Ax=

)

JT
(e

of | _ 7T
8—%—J

Compositions
¢ Our notation J/ — derivative of f in x.

¢ Linear function: f(z) = Az, then J/ = A

¢ Composition of linear functions: f(z)=ABx J/ =AB

xr

4 Non-linear composition: make a linear approximation to all steps and compose

Example f = \/log(x?) = vV o log o z?
2

4= z = log(y) f=vz
P
o :

(chain / total derivative rule)

In Neural Networks @

labels y

)

inputx — h —» g — — L[

Loss L(f(g(h(x))))

¢ We will need derivatives of the loss in different parameters. Shorthand: J, = J% = %.

¢ In order to compute J, we need to multiply all Jacobians:

Loss: Lofogohox

Derivative: J, = Jf J; JJ Jh

. — [0L 0L oL / g h
Expanded. Ja: — (a_fl 8_fQ 8_]%) Jg Jh J

e Matrix product is associative
e Going left-to-right is cheaper: O(Ln?) vs. O((L —1)n’?+n?),

for L layers with n neurons

Backpropagation

4+ Forward — composition of functions
weights w
l labels y
inputzr — h — g — f |— L

Loss L(f(g(h(x),w)),y)
e Feed-forward network = computation graph is a DAG

e Composition (o) notation possible when fixing all but one inputs

4 Backward:
TJw = J,J3

-—
Jp =95
J-ﬂhJ // TF oF

Jn=JgJ¢ Jy=JsJ]

Both Forward and Backward are Modular

4+ Forward:
weights w
h —> g —
g(h,w)
4+ Backward: weights w
T Jw = JgJ3

Jp=JgJ?

Both Forward and Backward are Modular

4+ Forward:
weights w
h —> g —
g(h,w)
4+ Backward (gradient): weights w

T Vol = (JO)TV, L

Vil = (J)TVoL «——| & —V,L

Example

¢ Correlation layer with inputs and weights w: y; = >, wiTjir +b;

dL

e Backward input: g; = 4y
J

e dL dL
o Need 7=, dwy," db,

e Total derivative (chain) rule:

L dL 9y;
dr; Zj dy; Ox;

=2, gjaa; (kakxﬁk"‘b)
=29 kaka%ﬁj%

= ;95 2k Welj + k=]

= 9iWi—j

Various special cases of linear dependencies can be handled in O(n) instead of O(n2)

Computation Graph, Forward Propagation @

4 Dynamic Graph (Eager Execution): 10
just compute what we need Wb
Declare and initialize variables l

torch.nn Parameter
torch.nn.functional

Parameter(torch. randn()) Input —>(Linear —> Softmax —> loss
Parameter(torch.randn(10))

Perform some operations

torch. randn()
torch.ones(10)

W@x+Db
F.softmax(a) _ _ _
= —(t % y.log()).sum() Computation graph defined by the operations performed:

@—> matmul — + —>@—> softmax —>@—> log —> * —» sum — -

Tensor (array)
size [10]
grad fn=<AddBackward0>

4+ Wow! Any computation can be made a part of a neural network

Backward Propagation @

11

r N N
\ 4 \ 4 \ 4
@-» matmul — + —>@ » softmax —>® » log > * —>sum— -
g VAN VAN
a = linear(x, W,b) y = softmax(a) L= —t"log(y)
a = F.linear(x,W,b) y = F.softmax(a)

4 Computationally more efficient to compute backward for larger blocks.
Also convenient for this example.

Backward Propagation @ o

12
@don’t need grad
~ R
\ 4
matmul — + —>@—> softmax —>@:: log > * —> sum— -
Jyy y
L= —t"log(y)

oL 9 1
Jy. = 5, = ~oy Zj tjlog(y;) = — ;L

matmul

Backward Propagation @ o

-

y; = softmax(a),; = = s

—JJy—ZJy

J, = J,(Diag(y) —yy') =

-)
— softmax —>@:
Ja p

13

don’t need grad

log —* * —>sum— -

e]

A
Jy

’L

y;
T 0a;

— Z Jyj (yz I[i:j yzyj Zyﬂ yj
J

Jy 0y —(Jyy)y'

(need to remember either input a or directly the output y)

Notice: forward and backward are both linear complexity

Backward Propagation @ o
14

@ @ don’t need grad
Jw

I
A 4 v
@:_matmul —> + @:_softmax —>@—> log > * —> sum— -
S (_ JJa

oa; :
Jup =225 Ja; Jr; = 2.5 Ja;Wi; [i=k] = 2.5 Ja;Wh,;
Jp = J W

V. L=W'V,L Note: a transposed product in comparison with Wx

@—> matmul

4+ What we have learned towards practical implementation:

Backward Propagation

-

 softmax

—(0k

SHIE

a

log

CAm ¢

15

don’t need grad

—» SUum —>» -

y,

~ | v

Do not need to explicitly compute the Jacobian of each layer, only need to

"backpropagate" through the layer

The granularity is up to the implementation: flexibility vs. efficiency

Need to store the input (point at which the Jacobian is evaluated) or recompute it

In real applications gradients are often shaped as higher dimensional tensors:

E.g. convolution with weights w [in, out, k h, k w]

- special efficient implementation for forward

- special efficient implementation for backward (transposed convolution)

Backward Propagation

matmul

O

-

don’t need grad

16

Dl - o.softnax()

MySoftmax(torch.nn.Module):
forward(self, a):
y = a.exp()
y =vy / y.sum()
return y

y = MySoftmax().forward(a)

-)

— softmax —>@:: log —* * —>sum— -
tla #)‘]@

y; = softmax(a),; = Ze:j%

Jo = Jy(Diag(y) —yy") = J, 0y — (Ju)y"

3)

MySoftmax(torch.autograd.Function):
@staticmethod
forward(ctx, a):
y = a.exp()
y /= y.sum()
ctx.save_for_backward(y)
return y

@staticmethod
backward(ctx, dy):
Y, ctx.saved_tensors
da =y xdy —y *x (y *x dy).sum()
return da

y = MySoftmax.apply(a)

General DAG

4 Consider the case when some of the inputs are used in several places

A 4

-

|

4 The total derivative rule:

(-

Il

<

d

4 The copy operation:
b' =b
b>=b

softmax >@—> f
(9f_|_(?fdy
ob Oydb

b Jp =

Jbl —l‘ Jb2

17

General DAG

4 Need to find the order of processing
e a node may be processed when all its parents are ready
® some operations can be executed in parallel

e reverse the edges for the backward pass

O@@ O 0'0 L]

v

18

General DAG
4 Any directed acyclic graph can be topologically ordered

e Equivalent to a layered network with skip connections

Note: every node here could be a tensor operation

Sl

\ Y

19

