
Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

March 27, 2023

1 / 29

Notes

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Unreliable actions in observable grid world

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S, actions a ∈ A
(Transition) Model T (s, a, s ′) ≡ p(s ′|s, a) = probability that a in s leads to s ′

2 / 29

Notes
Beginning of semester – search – deterministic and (fully) observable environment
Now:

� Observable – we keep for now – agent knows where it is.

� Deterministic – We introduce “imperfect” agent that does not always obey the command – stochastic
action outcomes.

There is a treasure (desired goal/end state) but there is also some danger (unwanted goal/end state).
The danger state: think about a mountainous area with safer but longer and shorter but more dangerous paths
– a dangerous node may represent a chasm.

Notation note: caligraphic letters like S,A will denote the set(s) of all states/actions.

Unreliable (results of) actions

3 / 29

Notes

Actions: go over a glacier bridge or around?

Plan? Policy

I In deterministic world: Plan – sequence of actions
from Start to Goal.

I MDPs, we need a policy π : S → A.

I An action for each possible state. Why each?

I What is the best policy?

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

> <

>

None

> None>

/\/\

/\

4 / 29

Notes
Ignore the 0.00 numbers in the cells.
Unlike in deterministic environment (also search problems), with stochastic action outcomes, we can end up in
any state. Thus, in any state, the robot/agent has to know what to do.

What is the best policy? We will come to that in a minute, ...

Rewards 0

0

1

1

2

2

3

3

0 0

1 1

2 2

-0.04

-0.04 -0.04

-0.04 1.00

-1.00-0.04

-0.04

-0.04

-0.04

-0.04

Reward : Robot/Agent takes an action a and it is immediately rewarded.

Reward function r(s) (or r(s, a), r(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

5 / 29

Notes
What do the rewards express? Reward to an agent to be/dwell in that state? Obviously we want the robot to go
to the goal and do not stay too long in the maze. The negative reward of –0.04 gives the agent an incentive to
reach the goal state quickly, so our environment is a stochastic generalization of the search problems.
Thinking about Reward: Robot/Agent takes an action a and it is immediately rewarded for this. The reward
may depend on

� current state s,

� the action taken a

� the next state s ′ - result of the action, and robot receives reward r for all this.

Rewards for terminal states can be understood as follows: there is only one action: a = exit. We will come to
this soon.
The reward function is a property of (is related to) the problem.

Notation remark: lowercase letters will be used for functions like p, r , v , f , . . .

Markov Decision Processes (MDPs)

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S, actions a ∈ A
Model T (s, a, s ′) ≡ p(s ′|s, a) = probability that a in s leads to s ′

Reward function r(s) (or r(s, a), r(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

6 / 29

Notes
States: x , y or r , c coordinates of the position

Actions: up, left, right, down or n, w, e, s

Robot/Agent walk – Episode

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

S0,A0,R1, S1,A1,R2, S2,A2 . . .

Episode : one walk from S0 to terminal.

7 / 29

Notes

At the START, agents decides Up/North but ends in a state right to START.

Markovian property

I Given the present state, the future and the past are independent.

I MDP: Markov means action depends only on the current state.

I In search: successor function (transition model) depends on the current state only.

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

8 / 29

Notes

� Properties are somewhat obvious, reasonable.

� However, you may break it if wrongly formalized.

� Always check before you go (do the calculations).

� It is a property of the state not the decision process.

Desired robot/agent behavior specified through rewards

I Before: shortest/cheapest path

I Solution found by search.

I Environment/problem is defined through the reward function.

I Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.

9 / 29

Notes

A B C

r(s) ∈ {−2, 1,−1} r(s) ∈ {−0.04, 1,−1} r(s) ∈ {−0.01, 1,−1}
a b c

A: A-a, B-b, C-c

B: A-b, B-a, C-c

C: A-b, B-c, C-a

D: A-c, B-a, C-b

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

10 / 29

Notes
Notation: reward(state) ∈ {living reward/penalty, reward in blue state, reward in red state}
� r(s) ∈ {−0.04, 1,−1}
� r(s) ∈ {−2, 1,−1} – environment very hostile (think about burning floor) –

heading for nearest exit even if it’s with negative reward

� r(s) ∈ {−0.01, 1,−1} – environment very mildly unpleasant –
conservative policy (banging head against the wall to avoid negative terminal state at all cost)

Quiz assignment: Match the environments (A, B, C) and the policies (arrows in every state) with the corresponding
reward functions (a,b,c).
(Use common sense.)

Quiz solution: C

Utilities of sequences; what is a better walk

I State reward at time/step t, Rt .

I State at time t, St . State sequence [S0, S1, S2, . . . ,]

Typically, consider stationary preferences on reward sequences:

[R,R1,R2,R3, . . .] � [R,R ′1,R
′
2,R

′
3, . . .]⇔ [R1,R2,R3, . . .] � [R ′1,R

′
2,R

′
3, . . .]

If stationary preferences :
Utility (h-history)
Uh([S0,S1,S2, . . . ,]) = R1 + R2 + R3 + · · ·

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on
how many steps left).

11 / 29

Notes
We consider discrete time t. St ,Rt notation emphasises the time sequence - not a sequence of particular states.
The reward is for an action (transition)

Finite vs non-finite horizon. Think about the simple 3× 4 grid from the last slides and having limited budget of

3,4,5 steps.

Finite walk – Episode – and its Return (by introducing Terminal state)

I Executing policy - sequence of states and rewards.

I Episode starts at t, ends at T (ending in a terminal state).

I Return (Utility) of the episode (policy execution)

Gt = Rt+1 + Rt+2 + Rt+3 + · · ·+ RT

3.4. Unified Notation for Episodic and Continuing Tasks 57

3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent–environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action a↵ects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to St, the state representation at
time t, but to St,i, the state representation at time t of episode i (and similarly for At,i,
Rt,i, ⇡t,i, Ti, etc.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between di↵erent episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write St to refer to St,i, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0, Summing
these, we get the same return whether we sum over the first T rewards (here T = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that � = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

Gt
.
=

TX

k=t+1

�k�t�1Rk, (3.11)

including the possibility that T =1 or � = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)

12 / 29

Notes

3.4. Unified Notation for Episodic and Continuing Tasks 57

3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent–environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action a↵ects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to St, the state representation at
time t, but to St,i, the state representation at time t of episode i (and similarly for At,i,
Rt,i, ⇡t,i, Ti, etc.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between di↵erent episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write St to refer to St,i, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0, Summing
these, we get the same return whether we sum over the first T rewards (here T = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that � = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

Gt
.
=

TX

k=t+1

�k�t�1Rk, (3.11)

including the possibility that T =1 or � = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)

Solid square – absorbing state – end of an episode.
(transitions only to itself and generates only rewards of zero)
Allows to unify two formulations of return (Gt) as a finite and infinite sum of rewards.

Horizon too far, infinite – Discount rewards

Problem: Infinite lifetime ⇒ additive utilities are infinite.

I Finite horizon: termination at a fixed time ⇒ nonstationary policy, π(s) depends on the
time left.

I Absorbing (terminal) state. (sooner or later walk ends here)

I Discounted return , γ < 1,Rt ≤ Rmax

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑

k=0

γkRt+k+1 ≤
Rmax

1− γ

Returns are successive steps related to each other

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + · · ·)
= Rt+1 + γGt+1

13 / 29

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

3.4. Unified Notation for Episodic and Continuing Tasks 57

3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent–environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action a↵ects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to St, the state representation at
time t, but to St,i, the state representation at time t of episode i (and similarly for At,i,
Rt,i, ⇡t,i, Ti, etc.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between di↵erent episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write St to refer to St,i, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0, Summing
these, we get the same return whether we sum over the first T rewards (here T = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that � = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

Gt
.
=

TX

k=t+1

�k�t�1Rk, (3.11)

including the possibility that T =1 or � = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)

Returns are successive steps related to each other

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + · · ·)
= Rt+1 + γGt+1

Solid square – absorbing state – end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (Gt) as a finite and infinite sum of rewards.

MDPs recap

Markov decision processes (MDPs):

I Set of states S
I Set of actions A
I Transitions p(s ′|s, a) or T (s, a, s ′)

I Reward function r(s, a, s ′); and discount γ

I Alternative to last two: p(s ′, r |s, a).

MDP quantities:

I (deterministic) Policy π(s) – choice of action for each state

I Return (Utility) of an episode (sequence) – sum of (discounted) rewards.

14 / 29

Notes

Think about what is given and what we want to compute.

Expected Return of a policy π

I Executing policy π → sequence of states (and rewards).

I Utility of a state sequence.

I But actions are unreliable - environment is stochastic.

I Expected return of a policy π.

Starting at time t, i.e. St ,

Uπ(St)
.

= Eπ

[∞∑

k=0

γkRt+k+1

]

15 / 29

Notes

3.4. Unified Notation for Episodic and Continuing Tasks 57

3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent–environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action a↵ects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to St, the state representation at
time t, but to St,i, the state representation at time t of episode i (and similarly for At,i,
Rt,i, ⇡t,i, Ti, etc.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between di↵erent episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write St to refer to St,i, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from S0, we get the reward sequence +1, +1, +1, 0, 0, 0, Summing
these, we get the same return whether we sum over the first T rewards (here T = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that � = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

Gt
.
=

TX

k=t+1

�k�t�1Rk, (3.11)

including the possibility that T =1 or � = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)

Contrast return of a particlar episode vs. value – expected utility of a state sequence in general – expected return.
Expected value can be also computed by running (executing) the policy many times and then computing average
of the returns – Monte Carlo simulation methods.

It is worth to mention that value function and action-value function are both tightly connected to a particular

policy π.

Value functions

Value function

vπ(s)
.

= Eπ [Gt | St = s] = Eπ

[∞∑

k=0

γkRt+k+1

∣∣∣∣ St = s

]

Action-value function (q-function)

qπ(s, a)
.

= Eπ [Gt | St = s,At = a] = Eπ

[∞∑

k=0

γkRt+k+1

∣∣∣∣ St = s,At = a

]

16 / 29

Notes

Optimal policy π∗, and optimal value v ∗(s)
v∗(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

Example 1, Robot deterministic: r(s) = {−0.04, 1,−1}, γ = 0.999999, ε = 0.03
Example 2, Robot non-deterministic: r(s) = {−0.04, 1,−1}, γ = 0.999999, ε = 0.03
Example 3, Robot non-deterministic: r(s) = {−0.01, 1,−1}, γ = 0.999999, ε = 0.03

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.84

0.84 0.84

0.88 1.00

-1.000.92

0.96

0.88

0.92

0.80

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

> <

> None

None/\

>

/\

>

/\

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.66 0.39

0.81 1.00

-1.000.66

0.92

0.61

0.87

0.71

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

< <

> None

None/\

>

<

>

/\

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.94

0.91 0.80

0.95 1.00

-1.000.89

0.98

0.90

0.96

0.92

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

< \/

> 1.00

-1.00<

>

<

>

/\

17 / 29

Notes
Showing cases for

� r(s) = {−0.04, 1,−1}, γ = 0.999999, ε = 0.03

� r(s) = {−0.01, 1,−1}, γ = 0.999999, ε = 0.03

What is the difference in the optimal policy? Try to explain why it happened.
We still do not know how to compute the optimality, ... right?

MDP search tree

The value of a q-state (s, a):

q∗(s, a) =
∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]

The value of a state s:

v∗(s) = max
a

q∗(s, a)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)

18 / 29

Notes

vπ(s) = Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γEπ [Gt+1 | St+1 = s ′

]]
Recall Expectimax algorithm from the last lecture.

How to compute V (s)? Well, we could solve the expectimax search, but it grows quickly. We can see R(s) as

the price for leaving the state s just anyhow.

Bellman (optimality) equation

v∗(s) = max
a∈A(s)

∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γv∗(s ′)

]

19 / 29

Notes

v computation on the table - one row for each action. We got n equations for n unknown - n states. But max is

a non-linear operator!

Value iteration – turn Bellman equation into Bellman update

v∗(s) = max
a∈A(s)

∑

s′

p(s ′|a, s)
[
r(s, a, s ′) + γv∗(s ′)

]

I Start with arbitrary V0(s) (except for terminals)

I Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

p(s ′|s, a)Vk(s ′)

I Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere
locally consistent ⇒ globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.
20 / 29

Notes

What is the complexity of each iteration?

Value iteration - Complexity of one estimation sweep

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

p(s ′|s, a)Vk(s ′)

A: O(AS)

B: O(S2)

C: O(AS2)

D: O(A2S2)

21 / 29

Notes

� The sweep goes through all the states S .

� From each state, we need evaluate all actions A.

� Each action may, in principle, land in any other state S .

Hence, the time complexity is: O(AS2).

Correct answer: C.

Value iteration (dynamic programming) vs. direct search

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

p(s ′|s, a)Vk(s ′)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)

22 / 29

Notes

Value iteration demo

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

P(s ′|s, a)Vk(s ′)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.66 0.39

0.81 1.00

-1.000.66

0.92

0.61

0.87

0.71

23 / 29

Notes

Run mdp agents.py and try to compute next state value in advance. Remind the R(s) = −0.04 and γ = 1 in

order to simplify computation. Then discuss the course of the Values.

Convergence

Vk+1(s)← R(s) + γ max
a∈A(s)

∑

s′

P(s ′|s, a)Vk(s ′)

γ < 1

−Rmax ≤ R(s) ≤ Rmax

Max norm:
‖V ‖ = max

s
|V (s)|

U([s0, s1, s2, . . . , s∞]) =
∞∑

t=0

γtR(st) ≤
Rmax

1− γ

24 / 29

Notes

Keep in mind that V is a vector of all state values. If the problem has 12 states (3× 4 grid) then it is a 12-dim

vector.

Convergence cont’d

Vk+1 ← BVk . . .B as the Bellman update Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′ p(s ′|s, a)Vk(s ′)

‖BVk − BV ′k‖ ≤ γ‖Vk − V ′k‖
‖BVk − Vtrue‖ ≤ γ‖Vk − Vtrue‖
Rewards are bounded, at the beginning then Value error is
‖V0 − Vtrue‖ ≤ 2Rmax

1−γ
We run N iterations and reduce the error by factor γ in each and want to stop the error is
below ε:
γN2Rmax/(1− γ) ≤ ε Taking logs, we find: N ≥ log(2Rmax/ε(1−γ))

log(1/γ)
To stop the iteration we want to find a bound relating the error to the size of one Bellman
update for any given iteration.
We stop if

‖Vk+1 − Vk‖ ≤
ε(1− γ)

γ

then also: ‖Vk+1 − Vtrue‖ ≤ ε Proof on the next slide

25 / 29

Notes
Try to prove that:

‖max f (a)−max g(a)‖ ≤ max ‖f (a)− g(a)‖
Note: The Bellman update is a contraction by a factor of γ on the space of utility vectors. ([1], 17.2.3)

Convergence cont’d

‖Vk+1 − Vtrue‖ ≤ ε is the same as ‖Vk+1 − V∞‖ ≤ ε
Assume ‖Vk+1 − Vk‖ = err
In each of the following iteration steps we reduce the error by the factor γ (because
‖BVk − Vtrue‖ ≤ γ‖Vk − Vtrue‖). Till ∞, the total sum of reduced errors is:

total = γerr + γ2err + γ3err + γ4err + · · · =
γerr

(1− γ)

We want to have total < ε.
γerr

(1− γ)
< ε

From it follows that

err <
ε(1− γ)

γ

Hence we can stop if ‖Vk+1 − Vk‖ < ε(1− γ)/γ

26 / 29

Notes

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

27 / 29

Notes

Sync vs. async Value iteration

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

28 / 29

Notes
Synchronous update: To update Vt(s), Vt−1(s) is used for all states s1, ..., sn.
Asynchronous update: Proceeds state by state. Imagine states s1, s2, s3 are neighbors in the state space (con-
nected by some action).

1. Update Vt(s1) using Vt−1(s2) and Vt−1(s3).

2. Update Vt+1(s2) using Vt(s1) and Vt(s3), whereby Vt(s3) = Vt−1(s3), but Vt(s1) 6= Vt−1(s1).

Note: Asynchronous update can be more than that. One can choose to pick the states for value update based
on their relevance – some heuristics. This can practically speed up convergence. At the same time, asymptotic
convergence remains guaranteed under certain conditions (basically that all states get to get updated at least
“every now and then”). (see [2], 4.5 Asynchronous Dynamic Programming)

References

Some figures from [1] (chapter 17) but notation slightly changed in order to adapt notation
from [2] (chapters 3, 4) which will help us in the Reinforcement Learning part of the course.
Note that the book [2] is available on-line.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

29 / 29

Notes

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

