Uncertainty, Chance, and Utilities

Tomáś Svoboda and Petr Pošík

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
March 20, 2023

Deterministic opponent \rightarrow stochastic environment

Deterministic opponent \rightarrow stochastic environment

Deterministic opponent \rightarrow stochastic environment

Deterministic opponent \rightarrow stochastic environment

b_{1}, b_{2}, b_{3} - stochastic branches, uncertain outcomes of a_{1} action.
CHANCE nodes are "virtual", b_{1}, b_{2}, b_{3} are not actions!

Why? Actions may fail, ...

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs

Why? Action costs not deterministic, ..., getting to work
A At home
tram bike car

Why? Action costs not deterministic, ..., getting to work

Why? Action costs not deterministic, ..., getting to work

Random variable: Function mapping situation on rails to values $T\left(r_{i}\right)=t_{i}$:
$t_{1}=T\left(r_{1}\right)=3$ mins (free rails)
$t_{2}=T\left(r_{2}\right)=12$ mins (accident)
$t_{3}=T\left(r_{3}\right)=8 \mathrm{mins}$ (congestion)

Why? Action costs not deterministic, ..., getting to work

Random variable: Function mapping situation on rails to values $T\left(r_{i}\right)=t_{i}$:
$t_{1}=T\left(r_{1}\right)=3$ mins (free rails)
$t_{2}=T\left(r_{2}\right)=12$ mins (accident)
$t_{3}=T\left(r_{3}\right)=8 \mathrm{mins}$ (congestion)

Why? Action costs not deterministic, ..., getting to work

Random variable: Function mapping situation on rails to values $T\left(r_{i}\right)=t_{i}$:
$t_{1}=T\left(r_{1}\right)=3 \mathrm{mins}$ (free rails)
$t_{2}=T\left(r_{2}\right)=12 \mathrm{mins}$ (accident)
$t_{3}=T\left(r_{3}\right)=8 \mathrm{mins}$ (congestion)
MAX/MIN depends on what the t_{i} options and terminal numbers mean. The goal may be to get to work as fast as possible.

Chance nodes values

Chance nodes values

Chance nodes values

- Average case, not the worst case.
- Calculate expected utilities...

Chance nodes values

- Average case, not the worst case.
- Calculate expected utilities...
- i.e. take weighted average (expectation) of successors

Random variables, probability distribution, ...

- Random variable - a function that maps experiment outcomes to values
- Probability distribution - assignment of probabilities (weights) to the values

Random variables, probability distribution, ...

- Random variable - a function that maps experiment outcomes to values
- Probability distribution - assignment of probabilities (weights) to the values

- Random variable: $T(s)$ - maps situation on rails to values

Random variables, probability distribution, ...

- Random variable - a function that maps experiment outcomes to values
- Probability distribution - assignment of probabilities (weights) to the values

- Random variable: $T(s)$ - maps situation on rails to values
- Values of $T(s): T(s) \in\{3,12,8\}$, corresponding to outcomes s (free rails, accident, congestion)

Random variables, probability distribution, ...

- Random variable - a function that maps experiment outcomes to values
- Probability distribution - assignment of probabilities (weights) to the values

- Random variable: $T(s)$ - maps situation on rails to values
- Values of $T(s): T(s) \in\{3,12,8\}$, corresponding to outcomes s (free rails, accident, congestion)
- Probability distribution: $P(T=3)=0.3, P(T=12)=0.1, P(T=8)=0.6$

Random variables, probability distribution, ...

- Random variable - a function that maps experiment outcomes to values
- Probability distribution - assignment of probabilities (weights) to the values

- Random variable: $T(s)$ - maps situation on rails to values
- Values of $T(s): T(s) \in\{3,12,8\}$, corresponding to outcomes s (free rails, accident, congestion)
- Probability distribution: $P(T=3)=0.3, P(T=12)=0.1, P(T=8)=0.6$

A few reminders from laws of probability, Probabilities:

- always non-negative,
- sum over all possible outcomes is equal to 1 .

Expectations, ...

How long does it take to go to work by tram?

- Depends on the random variable T with possible values t_{1}, t_{2}, t_{3} (corresponding to situation on rails).
- What is the expectation of the time?

Expectations, ...

How long does it take to go to work by tram?

- Depends on the random variable T with possible values t_{1}, t_{2}, t_{3} (corresponding to situation on rails).
- What is the expectation of the time?

Using values t_{1}, t_{2}, t_{3} of random variable T :

$$
E(T)=P\left(t_{1}\right) t_{1}+P\left(t_{2}\right) t_{2}+P\left(t_{3}\right) t_{3}
$$

Expectations, ...

How long does it take to go to work by tram?

- Depends on the random variable T with possible values t_{1}, t_{2}, t_{3} (corresponding to situation on rails).
- What is the expectation of the time?

Using values t_{1}, t_{2}, t_{3} of random variable T :

$$
E(T)=P\left(t_{1}\right) t_{1}+P\left(t_{2}\right) t_{2}+P\left(t_{3}\right) t_{3}
$$

Or, using random outcomes r_{1}, r_{2}, r_{3} :

$$
E(T)=P\left(r_{1}\right) T\left(r_{1}\right)+P\left(r_{2}\right) T\left(r_{2}\right)+P\left(r_{3}\right) T\left(r_{3}\right)
$$

Expected value of a discrete r.v.: Weighted average

Expectimax

function Expectimax(state) return a value
if IS-TERMINAL(state): return UTILITY(state)
if state (next agent) is MAX: return MAX-VALUE(state)
if state (next agent) is CHANCE: return EXP-VALUE(state)
end function
function MAX-VALUE(state) return value v
$v \leftarrow-\infty$
for a in ACTIONS(state) do
$v \leftarrow \max (v, \operatorname{EXPECTIMAX}(\operatorname{RESULT}($ state,$a)))$
end for
end function

Expectimax

function EXPECTIMAX(state) return a value
if IS-TERMINAL(state): return UTILITY(state)
if state (next agent) is MAX: return MAX-VALUE(state)
if state (next agent) is CHANCE: return EXP-value(state)
end function
function MAX-VALUE(state) return value v
$v \leftarrow-\infty$
for a in ACTIONS(state) do
$v \leftarrow \max (v, \operatorname{EXPECTIMAX}(\operatorname{RESULT}($ state,$a)))$
end for
end function
function EXP-VALUE(state) return value v
$v \leftarrow 0$
for all $r \in$ random outcomes do

$$
v \leftarrow v+P(r) \operatorname{EXPECTIMAX}(\operatorname{RESULT}(\text { state }, r))
$$

end for
end function

How about the Reversi game?

- Is there any space for randomness?
- Is the opponent really greedy and clever enough?

How about the Reversi game?

- Is there any space for randomness?
- Is the opponent really greedy and clever enough?
- Hope for chance when there is adversarial world - Dangerous optimism
- Assuming worst case even if it is not likely - Dangerous pessimism

Games with chance and strategy

Random variable: Throwing two dice

Do we care which die comes first?

Random variable: Throwing two dice

Do we care which die comes first?

A $1 / 24$
B $1 / 36$
C $1 / 18$
D $1 / 6$

[^0]
Random variable: Throwing two dice

Do we care which die comes first?

A $1 / 24$
B $1 / 36$
C $1 / 18$
D $1 / 6$

[^1]
Mixing MAX, CHANCE, and MIN nodes

Mixing MAX, CHANCE, and MIN nodes

Extra random agent that moves after each MAX and MIN agent

$$
\operatorname{EXPECTIMINIMAX}(s)=
$$

$$
=\{
$$

Extra random agent that moves after each MAX and MIN agent

$$
\operatorname{EXPECTIMINIMAX}(s)=
$$

$$
= \begin{cases}\operatorname{UTILITY}(s, \operatorname{MAX}) & \text { if } \operatorname{IS-TERMINAL}(s) \\ & \end{cases}
$$

Extra random agent that moves after each MAX and MIN agent

$$
\operatorname{EXPECTIMINIMAX}(s)=
$$

$$
=\left\{\begin{array}{lll}
\operatorname{UTiLITY}(s, \operatorname{mAx}) & \text { if } & \operatorname{IS-TERMINAL}(s) \\
\max _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } & \operatorname{TO-PLAY}(s)=\operatorname{mAX} \\
& &
\end{array}\right.
$$

Extra random agent that moves after each MAX and MIN agent

$$
\operatorname{EXPECTIMINIMAX}(s)=
$$

$$
=\left\{\begin{array}{lll}
\operatorname{UTILITY}(s, \operatorname{MAX}) & \text { if } & \text { IS-TERMINAL }(s) \\
\max _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } & \operatorname{TO}-\operatorname{PLAY}(s)=\text { MAX } \\
\min _{a} \operatorname{EXPECTImINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } & \operatorname{TO-PLAY}(s)=\text { MIN }
\end{array}\right.
$$

Extra random agent that moves after each MAX and MIN agent

$$
\operatorname{EXPECTIMINIMAX}(s)=
$$

$$
=\left\{\begin{array}{lll}
\operatorname{UTILITY}(s, \operatorname{MAX}) & \text { if } & \text { IS-TERMINAL }(s) \\
\max _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } & \text { TO-PLAY }(s)=\text { MAX } \\
\min _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } & \text { TO-PLAY }(s)=\text { MIN } \\
\sum_{r} P(r) \text { EXPECTIMINIMAX }(\operatorname{RESULT}(s, r)) & \text { if } & \text { TO-PLAY }(s)=\text { CHANCE }
\end{array}\right.
$$

Mixing chance into $\min / m a x$ tree. How big is the tree going to be?

- b branching factor
- m maximum depth
- n number of distinct rolls

What is the time complexity of EXPECTIMINIMAX?

A $O\left(b^{m n}\right)$
B $O\left(b^{m} n\right)$
C $O\left(b^{m} n^{b}\right)$
D $O\left(b^{m} n^{m}\right)$

Evaluation function MAX

MIN

Evaluation function

- Left: a_{1} is the best. Right: a_{2} is the best. Ordering of the (terminal) leaves is the same.

Evaluation function

Left: a_{1} is the best. Right: a_{2} is the best. Ordering of the (terminal) leaves is the same.

- Scale matters! Not only ordering.

Evaluation function

MAX

CHANCE

MIN

- Left: a_{1} is the best. Right: a_{2} is the best. Ordering of the (terminal) leaves is the same.
- Scale matters! Not only ordering.
- Can we prune the tree? (α, β like?)

Pruning expectiminimax tree

Pruning expectiminimax tree

MAX

TERMINAL

- Bounds on terminal utilities needed. Terminal values from -2 to 2 .
- Monte Carlo simulation for evaluation of a position (state).

Where to prune the Expectimax tree

- Assume terminal nodes bounded to -2 to 2 , inclusive
- Going from left to right.
- Which branches can be pruned out?

Assume terminal nodes bounded to -2 to 2 , inclusive. Going from left to right.

Multi-player games

to move

Multi-player games

to move
A

B

- Utility tuples
- Each player maximizes its own
- Coalitions, cooperations, competitions may be dynamic

Uncertainty recap (enough games, back to the robots/agents)

- Uncertain outcome of an action.

Uncertainty recap (enough games, back to the robots/agents)

- Uncertain outcome of an action.
- Robot/Agent may not know the current state!

Uncertain outcome of an action

Uncertain, partially observable environment

- Current state s may be unknown, observations e
- Uncertain outcome, random variable RESULT(a)
- Probability of outcome s^{\prime} given \mathbf{e} is

$$
P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right)
$$

- Utility function $U(s)$ corresponds to agent preferences.
- Expected utility of an action a given e:

$$
E U(a \mid \mathbf{e})=\sum_{s^{\prime}} P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right) U\left(s^{\prime}\right)
$$

Rational agent

Agent's expected utility of an action a given e:

$$
E U(a \mid \mathbf{e})=\sum_{s^{\prime}} P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right) U\left(s^{\prime}\right)
$$

What should a rational agent do?

Rational agent

Agent's expected utility of an action a given \mathbf{e} :

$$
E U(a \mid \mathbf{e})=\sum_{s^{\prime}} P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right) U\left(s^{\prime}\right)
$$

What should a rational agent do?
Is it then all solved? Do we know all what we need?

Rational agent

Agent's expected utility of an action a given e:

$$
E U(a \mid \mathbf{e})=\sum_{s^{\prime}} P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right) U\left(s^{\prime}\right)
$$

What should a rational agent do?
Is it then all solved? Do we know all what we need?

- $P\left(\operatorname{Result}(a)=s^{\prime} \mid a, \mathbf{e}\right)$
- $U\left(s^{\prime}\right)$

Utilities

- Where do utilities come from?
- Does averaging make sense?
- Do they exist?
- What if our preferences can't be described by utilities?

Agent/Robot Preferences

- Prizes A, B
- Lottery: uncertain prizes $L=[p, A ;(1-p), B]$

Agent/Robot Preferences

- Prizes A, B
- Lottery: uncertain prizes $L=[p, A ;(1-p), B]$

Preference, indifference, ...

- Robot prefers A over $B: A \succ B$
- Robot has no preferences: $A \sim B$
- in between: $A \succsim B$

Rational preferences

- Transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
- Completeness: $(A \succ B) \vee(B \succ A) \vee(A \sim B)$
- Continuity: $(A \succ B \succ C) \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
- Substituability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p C]$. The same for \succ and \sim.
- Monotonocity: $A \succ B \Rightarrow(p>q) \Leftrightarrow[p, A ; 1-p, B] \succ[q, A ; 1-q, B]$. Agent must prefer a lottery with higher chance to win.
- Decomposability, compressing compound lotteries into one:
$[p, A ; 1-p,[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]$

Rational preferences

- Transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
- Completeness: $(A \succ B) \vee(B \succ A) \vee(A \sim B)$
- Continuity: $(A \succ B \succ C) \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
- Substituability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p C]$. The same for \succ and \sim.
- Monotonocity: $A \succ B \Rightarrow(p>q) \Leftrightarrow[p, A ; 1-p, B] \succ[q, A ; 1-q, B]$. Agent must prefer a lottery with higher chance to win.
- Decomposability, compressing compound lotteries into one:

$$
[p, A ; 1-p,[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]
$$

Axioms of utility theory.
Motivation: if agent/robot violates an axiom \Rightarrow irrational agent/robot.

Transitivity and decomposability

Goods A, B, C and (nontransitive) preferences of an (irrational) agent $A \succ B \succ C \succ A$.

is equivalent to

(a)
(b)

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

$$
\begin{aligned}
& u(A)>u(B) \quad \Leftrightarrow \quad A \succ B \\
& u(A)=u(B) \quad \Leftrightarrow \quad A \sim B
\end{aligned}
$$

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

$$
\begin{aligned}
& u(A)>u(B) \Leftrightarrow \\
& u(A)=u(B) \Leftrightarrow \\
& u(A \sim B
\end{aligned}
$$

Expected utility of a Lotery L (outcomes s_{i} with probabilities p_{i}):

$$
L\left(\left[p_{1}, S_{1} ; \cdots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} u\left(S_{i}\right)
$$

Proof in [3].

Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

$$
\begin{aligned}
& u(A)>u(B) \quad \Leftrightarrow \quad A \succ B \\
& u(A)=u(B) \quad \Leftrightarrow \quad A \sim B
\end{aligned}
$$

Expected utility of a Lotery L (outcomes s_{i} with probabilities p_{i}):

$$
L\left(\left[p_{1}, S_{1} ; \cdots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} u\left(S_{i}\right)
$$

Proof in [3].
Is a utility u function unique?

Human utilities

Utility of money

You triumphed in a TV show!
a) Take $\$ 1,000,000 \ldots$ or
b) Flip a coin and loose all or win $\$ 2,500,000$

Utility of money: human psychology vs. hard data

Utility of money: human psychology vs. hard data

References I

Some figures from [2], Chapters 5, 16. Human utilities are discussed in [1]. This lecture has been also greatly inspired by the 7th lecture of CS 188 at http://ai.berkeley.edu as it convenietly bridges the world of deterministic search and sequential decisions in uncertain worlds.
[1] Daniel Kahneman.
Thinking, Fast and Slow.
Farrar, Straus and Giroux, 2011.
[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

References II

[3] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior.
Princeton, 1944.
https://en.wikipedia.org/wiki/Theory_of_Games_and_Economic_Behavior, Utility theorem.

[^0]: ${ }^{1}$ Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

[^1]: ${ }^{1}$ Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574

