## Q Learning

Consider the grid-world given below and an agent (yellow) moving using these actions: N-North, W-West, E-East, S-South. Rewards are only awarded for reaching one of the terminal states (green and red). Assume discount factor  $\gamma = 1$  for all calculations.



The agent starts from the top left corner and you are given the following episodes from runs of the agent through this grid-world. Each line in an Episode is a tuple containing  $(s_t, a_t, s_{t+1}, r_{t+1})$ , where t denotes time (iteration) in a training episode.

| Episode 1            | Episode 2            | Episode 3            | Episode 4            | Episode 5            |
|----------------------|----------------------|----------------------|----------------------|----------------------|
| (1,3), S, (1,2), 0   |
| (1,2), E, (2,2), 0   |
| (2,2), E, (3,2), 0   | (2,2), N, (2,3), -10 |
| (3,2), S, (3,1), 100 | (3,2), S, (3,1), 100 | (3,2), N, (3,3), 140 | (3,2), N, (3,3), 140 |                      |

Q-learning is an on-line method for learning optimal Q-values in MDP, used in the case of unknown rewards with transitional models. The initial values of the Q function are zero and are updated using the following formulae::

 $Q(s_t, a_t) = Q(s_t, a_t) + \alpha(\operatorname{trial}_{t,t+1} - Q(s_t, a_t))$ 

$$\operatorname{trial}_{t,t+1} = r_{t+1} + \gamma \max Q(s_{t+1}, a)$$

and  $\gamma$  is discount factor and  $\alpha$  is learning rate. For following values Q and upper episodes find out *first* episode and *iteration* (t), when value Q will be non zero. Write it in form E:2, t:3 - in the 2nd episode and 3rd iteration.

Q((1,2), E) =\_\_\_\_\_ Q((2,2), E) =\_\_\_\_\_ Q((3,2), S) =\_\_\_\_\_