Consider a problem of classification into three classes and a 2D space of points $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$. For each class we have following data (transposition will be left out for simplified notation, but all vectors are implicitly in columns).
$\mathrm{A}: \mathcal{T}=\{[-1,0.0],[3,1.0]\}$
B: $\mathcal{T}=\{[4,0.5],[5,5.0]\}$
C: $\mathcal{T}=\{[7,5.0],[8,2.5]\}$
Find the parameters of the discrimination function so that

$$
\begin{equation*}
s^{*}=\underset{s \in S}{\arg \max } f_{s}(\mathbf{x}) \tag{1}
\end{equation*}
$$

will clasificate these data without mistakes. The discrimination function is linear (affine), in form of

$$
\begin{equation*}
f_{s}(\mathbf{x})=\mathbf{w}_{s}^{\top} \mathbf{x}+w_{s 0} \tag{2}
\end{equation*}
$$

For every class, we are trying to find three numbers (\mathbf{w}_{s} and $w_{s 0}$). For completeness, it should be pointed out that valid solution is not a drawing lines into a graph, but finding the three numbers for each of these classes.

