Classifiers

Z. Straka, P. Švarný, J. Kostlivá

Today two examples:

- 1. Recall and Precision
- 2. Linear classification

Confusion matrix

		Actual class		
		Р	N	
Dradiated alars	Ρ	TΡ	FP	
	Ν	FN	ΤN	

The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3
А	FN = 18	TN = 14

classifier	TP = 60	FP = 80
В	<i>FN</i> = 43	TN = 21

U		<u> </u>
classifier	TP = 13	FP = 14
С	FN = 18	TN = 1

classifier	TP = 14	FP = 16
D	<i>FN</i> = 4	TN = 80

Recall:

A:
$$\frac{TP}{TP+FN}$$

B: $\frac{TP}{TP+TN}$
C: $\frac{TP}{FP+FN}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3
А	FN = 18	TN = 14

classifier	TP = 60	FP = 80
В	<i>FN</i> = 43	TN = 21

<u> </u>		<u> </u>
classifier	TP = 13	FP = 14
С	FN = 18	TN = 1

classifier	TP = 14	FP = 16
D	<i>FN</i> = 4	TN = 80

Recall:

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3	classifier	TP = 13	<i>FP</i> = 14	
А	FN = 18	TN = 14	С	FN = 18	TN = 1	Recall: TP
						TRECall. TP+FN
classifier	TP = 60	FP = 80	classifier	TP = 14	FP = 16	
В	<i>FN</i> = 43	TN = 21	D	<i>FN</i> = 4	TN = 80	

Precision:

A:
$$\frac{TP}{TP+FN}$$

B: $\frac{FP}{FP+TN}$
C: $\frac{TP}{TP+FP}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	FP = 14
А	FN = 18	TN = 14		С	FN = 18	TN = 1
classifier	TP = 60	FP = 80		classifier	TP = 14	FP = 16
B	FN = 43	TN = 21	1	D	FN = 4	TN = 80

Precision:

 \blacktriangleright Recall: $\frac{TP}{TP+FN}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3]	classifier	TP = 13	<i>FP</i> = 14	
А	FN = 18	TN = 14]	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	FP = 80		classifier	TP = 14	FP = 16	Precision: $\frac{TP}{TP+FP}$
В	<i>FN</i> = 43	TN = 21	1	D	<i>FN</i> = 4	TN = 80	

- A: class1: 23, class2: 32
- B: class1: 38, class2: 17
- C: class1: 21, class2: 34
- D: class1: 23, class2: 36

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3	classifier	TP = 13	FP = 14		
A	FN = 18	TN = 14	С	FN = 18	TN = 1		Reca
							-
classifier	TP = 60	<i>FP</i> = 80	classifier	TP = 14	FP = 16		Prec
В	<i>FN</i> = 43	TN = 21	D	FN = 4	TN = 80]	

For the classifier from table A count the number of members for the two classes (from the point of view of the data/reality):

A: class1: 23, class2: 32

B: class1: 38, class2: 17

C: class1: 21, class2: 34

D: class1: 23, class2: 36

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3	classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	<i>FP</i> = 80	classifier	TP = 14	FP = 16	Precision: $\frac{TF}{TP+FP}$
В	FN = 43	TN = 21	D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14]	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	<i>FP</i> = 80		classifier	TP = 14	FP = 16	Precision: $\frac{TP}{TP+FP}$
В	<i>FN</i> = 43	TN = 21		D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3]	classifier	TP = 13	<i>FP</i> = 14	
А	FN = 18	TN = 14]	С	FN = 18	TN = 1	Recall: TP TP+FN
			_				
classifier	TP = 60	<i>FP</i> = 80		classifier	TP = 14	FP = 16	Precision: TP+FP
В	<i>FN</i> = 43	TN = 21]	D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

Which measure is more important for the decision, recall or precision?:

A: Recall

B: Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	<i>FP</i> = 14	
А	FN = 18	TN = 14	j	С	FN = 18	TN = 1	Recall: TP TP+FN
classifier	TP = 60	FP = 80		classifier	TP = 14	FP = 16	Precision: $\frac{TF}{TP+FP}$
В	<i>FN</i> = 43	TN = 21	1 -	D	FN = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.

Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

A because it has the lowest $\frac{FP}{TP+FP}$

Which measure is more important for the decision, recall or precision?:

B: Precision, because $\frac{FP}{TP+FP} = 1 - Precision$. Therefore, we are looking for the maximum Precision.

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3	classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	<i>FP</i> = 80	classifier	TP = 14	FP = 16	Precision: $\frac{TP}{TP+FP}$
В	<i>FN</i> = 43	TN = 21	D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey. Teals: M is a lassifier (A (B (C (D)) is the set set))

Task: Which classifier (A/B/C/D) is the safest?

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14	1	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	<i>FP</i> = 80		classifier	TP = 14	FP = 16	Precision: $\frac{TP}{TP+FP}$
В	<i>FN</i> = 43	TN = 21		D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey. **Task:** Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14]	С	FN = 18	TN = 1	Recall: <u>TP</u> TP+FN
classifier	TP = 60	FP = 80		classifier	TP = 14	FP = 16	Precision: $\frac{TF}{TP+FP}$
В	<i>FN</i> = 43	TN = 21]	D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey. **Task:** Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

Which metric is important for this decision, recall or precision?:

A: Recall

B: Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN). true negative (TN).

classifier	TP = 20	<i>FP</i> = 3		classifier	TP = 13	<i>FP</i> = 14		
А	FN = 18	TN = 14	1	С	FN = 18	TN = 1		Recall: TP TP+FN
classifier	TP = 60	<i>FP</i> = 80		classifier	TP = 14	FP = 16		Precision: $\frac{TT}{TP+}$
В	<i>FN</i> = 43	TN = 21	ĺ	D	<i>FN</i> = 4	TN = 80	ĺ	,

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey. **Task:** Which classifier (A/B/C/D) is the safest?

D because it has the lowest $\frac{FN}{TP+FN}$

Which metric is important for this decision, recall or precision?:

A: Recall, because $\frac{FN}{TP+FN} = 1 - Recall$. Therefore, we are looking for the maximum Recall.

 $\frac{TP}{TP \perp FP}$

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	TP = 20	FP = 3	classifier	TP = 13	FP = 14	
А	FN = 18	TN = 14	С	FN = 18	TN = 1	\blacktriangleright Recall: $\frac{TP}{TP+FN}$
classifier	TP = 60	FP = 80	classifier	TP = 14	FP = 16	Precision: $\frac{TP}{TP+FP}$
В	<i>FN</i> = 43	TN = 21	D	<i>FN</i> = 4	TN = 80	

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey. **Discussion:** Suggest the simplest and safest classifier. Use chat or microphone. Could it be used in practice?

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images: **Recall:** What is related to recall?

- A: How many (what percentage of) objects/pedestrians missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images: **Recall:** What is related to recall?

How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

- A: How many (what percentage of) objects/pedestrians are not missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images: **Recall:** What is related to recall?

How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

- A: How many (what percentage of) objects/pedestrians are not missed?
- B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
- C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
- D: How much are the (pedestrian) detections contaminated by false detections?

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images: **Recall:** What is related to recall?

How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

D: How much are the (pedestrian) detections contaminated by false detections?

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$

Think about object (pedestrian) detection in images: **Recall:** What is related to recall?

- How many (what percentage of) objects/pedestrians missed?
- Precision: What is related to precision?
 - ▶ How much are the (pedestrian) detections contaminated by false detections?

It is difficult to satisfy both.

Linear classification

Classification is made according to:

$$s^* = rgmax_s f_s(x)$$

where $f_s(x) = w_s x + b_s, w_s, b_s \in R, s \in \{1, 2\}$ Select a classifier with zero classification error on the given dataset

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

B: $w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$
C: $w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$
D: $w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$

Classification is made according to:

$$s^* = rgmax_s f_s(x)$$

where $f_s(x) = w_s x + b_s$, w_s , $b_s \in R$, $s \in \{1, 2\}$ Select a classifier with zero classification error on the given dataset:

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

B: $w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$
C: $w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$
D: $w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$

Classification is made according to:

$$s^* = rgmax_s f_s(x)$$

where $f_s(x) = w_s x + b_s$, w_s , $b_s \in R$, $s \in \{1, 2\}$ Select a classifier with zero classification error on the given dataset:

A:
$$w_1 = 1, b_1 = 0; w_2 = -1, b_2 = 0$$

B: $w_1 = 1, b_1 = -2.4; w_2 = -1, b_2 = 2.5$

C:
$$w_1 = -1, b_1 = 2.5; w_2 = 1, b_2 = -2.4$$

D: $w_1 = -1, b_1 = 0; w_2 = 1, b_2 = 0$

Alternatively (only for binary classification):

A:
$$s^* = (\operatorname{sgn}(x - 2.5) + 1)/2 + 1$$

B:
$$s^* = sgn(x - 2.5)$$

C:
$$s^* = \max(x_i - 2.5)$$

D: $s^* = sgn(x - 2.5) + 1$

Alternatively (only for binary classification):

A:
$$s^* = (sgn(x - 2.5) + 1)/2 + 1$$

- **B**: $s^* = sgn(x 2.5)$
- C: $s^* = \max(x_i 2.5)$

D: $s^* = sgn(x - 2.5) + 1$

Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

Yes

x1

No

Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

Yes.

x1

Draw the solution.