Classifiers

Z. Straka, P. Švarný, J. Kostlivá

Today two examples:

1. Recall and Precision
2. Linear classification

Recall and Precision

Confusion matrix

		Actual class	
		P	N
Predicted class	P	$T P$	$F P$
	N	$F N$	$T N$

The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

Recall:
A: $\frac{T P}{T P+F N}$
B: $\frac{T P}{T P+T N}$
C: $\frac{T P}{F P+F N}$
D: $\frac{F P}{T P+F N}$

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

Recall:
A: $\frac{T P}{T P+F N}$
B:
C:
D:

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

- Recall: $\frac{T P}{T P+F N}$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

Precision:
A: $\frac{T P}{T P+F N}$
B: $\frac{F P}{F P+T N}$
C: $\frac{T P}{T P+F P}$
D: $\frac{F P}{T P+F N}$

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

- Recall: $\frac{T P}{T P+F N}$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

Precision:
A:
B:
C: $\frac{T P}{T P+F P}$
D:

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

For the classifier from table A count the number of members for the two classes (from the point of view of the data/reality):

A: class1: 23, class2: 32
B: class1: 38, class2: 17
C: class1: 21, class2: 34
D: class1: 23, class2: 36

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

For the classifier from table A count the number of members for the two classes (from the point of view of the data/reality):

A:
B: class1: 38, class2: 17
C:
D: \qquad

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?
A because it has the lowest $\frac{F P}{T P+F P}$

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?
A because it has the lowest $\frac{F P}{T P+F P}$
Which measure is more important for the decision, recall or precision?:
A: Recall
B: Precision

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) will unnecessarily stop the car the least amount of times?
A because it has the lowest $\frac{F P}{T P+F P}$
Which measure is more important for the decision, recall or precision?:
B: Precision, because $\frac{F P}{T P+F P}=1-$ Precision. Therefore, we are looking for the maximum Precision.

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) is the safest?

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) is the safest?
D because it has the lowest $\frac{F N}{T P+F N}$

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) is the safest?
D because it has the lowest $\frac{F N}{T P+F N}$
Which metric is important for this decision, recall or precision?:
A: Recall
B: Precision

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$

classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Task: Which classifier (A/B/C/D) is the safest?
D because it has the lowest $\frac{F N}{T P+F N}$
Which metric is important for this decision, recall or precision?:
A: Recall, because $\frac{F N}{T P+F N}=1-$ Recall. Therefore, we are looking for the maximum Recall.

Recall and Precision

You get a few confusion matrices of 4 different classifiers. The abbreviations have the following meaning true positive (TP), false positive (FP), false negative (FN), true negative (TN).

classifier	$T P=20$	$F P=3$
A	$F N=18$	$T N=14$
classifier	$T P=60$	$F P=80$
B	$F N=43$	$T N=21$

classifier	$T P=13$	$F P=14$
C	$F N=18$	$T N=1$
classifier	$T P=14$	$F P=16$
D	$F N=4$	$T N=80$

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Let us assume that this is a table of classifiers that recognize the presence of a person in front of an autonomous car. The car stops or continues its journey.
Discussion: Suggest the simplest and safest classifier. Use chat or microphone.
Could it be used in practice?

Summary Recall and Precision

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Think about object (pedestrian) detection in images:
Recall: What is related to recall?
A: How many (what percentage of) objects/pedestrians missed?
B: How often are the (pedestrian) detections truly negative compared to truly positive detections?
C: How often are the (pedestrian) detections truly positive compared to truly negative detections?
D: How much are the (pedestrian) detections contaminated by false detections?

Summary Recall and Precision

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Think about object (pedestrian) detection in images:
Recall: What is related to recall?

- How many (what percentage of) objects/pedestrians missed?

Summary Recall and Precision

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Think about object (pedestrian) detection in images:
Recall: What is related to recall?

- How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?
A: How many (what percentage of) objects/pedestrians are not missed?
B: How often are the (pedestrian) detections truly negative compared to truly positive detections?

C: How often are the (pedestrian) detections truly positive compared to truly negative detections?

D: How much are the (pedestrian) detections contaminated by false detections?

Summary Recall and Precision

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Think about object (pedestrian) detection in images:
Recall: What is related to recall?

- How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?
D: How much are the (pedestrian) detections contaminated by false detections?

Summary Recall and Precision

- Recall: $\frac{T P}{T P+F N}$
- Precision: $\frac{T P}{T P+F P}$

Think about object (pedestrian) detection in images:
Recall: What is related to recall?

- How many (what percentage of) objects/pedestrians missed?

Precision: What is related to precision?

- How much are the (pedestrian) detections contaminated by false detections?

It is difficult to satisfy both.

Linear classification

1D classification

1D classification

Classification is made according to:

$$
s^{*}=\underset{s}{\arg \max } f_{s}(x)
$$

where $f_{s}(x)=w_{s} x+b_{s}, w_{s}, b_{s} \in R, s \in\{1,2\}$
Select a classifier with zero classification error on the given dataset:
A: $w_{1}=1, b_{1}=0 ; w_{2}=-1, b_{2}=0$
B: $w_{1}=1, b_{1}=-2.4 ; w_{2}=-1, b_{2}=2.5$
C: $w_{1}=-1, b_{1}=2.5 ; w_{2}=1, b_{2}=-2.4$
D: $w_{1}=-1, b_{1}=0 ; w_{2}=1, b_{2}=0$

1D classification

Classification is made according to:

$$
s^{*}=\underset{s}{\arg \max } f_{s}(x)
$$

where $f_{s}(x)=w_{s} x+b_{s}, w_{s}, b_{s} \in R, s \in\{1,2\}$
Select a classifier with zero classification error on the given dataset:
A:
B:
C: $w_{1}=-1, b_{1}=2.5 ; w_{2}=1, b_{2}=-2.4$
D:

1D classification

Alternatively (only for binary classification):
A: $s^{*}=(\operatorname{sgn}(x-2.5)+1) / 2+1$
B: $s^{*}=\operatorname{sgn}(x-2.5)$
C: $s^{*}=\max \left(x_{i}-2.5\right)$
D: $s^{*}=\operatorname{sgn}(x-2.5)+1$

1D classification

Alternatively (only for binary classification):
A: $s^{*}=(\operatorname{sgn}(x-2.5)+1) / 2+1$
B:
C:
D:

2D classification

$\times 2$ -

Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

Yes
No

2D classification

Is it possible to get zero classification errors on the given training multiset using only a linear classifier?

- Yes.

2D classification

x2』

- Draw the solution.

