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Motivation

https://oneapi-src.github.io/oneDNN/v1.0/cpu_performance_profiling_8cpp-example.html

#include <iostream>
#include <vector>
#include "mkldnn.hpp"

using namespace mkldnn;

…

int main(int argc, char **argv) {
try {

simple_net();
std::cout << "ok\n";

} catch (error &e) {
std::cerr << "status: " << e.status << std::endl;
std::cerr << "message: " << e.message << std::endl;

}
return 0;

}



Parallel Programming
For numerical linear algebra

In the second lecture, we have seen 
that within shared-memory parallel 
programming, we have broadly four 
options:
• Confinement: Do not share memory 

between threads. 
• Immutability: Do not share any 

mutable data between threads. 
• Thread-safe code: Use data types 

with additional guarantees for 
storing any mutable data shared 
between threads, or even better, use 
implementations of algorithms that 
are already parallelized and handle 
the concurrency issues for you.

• Synchronization: Use 
synchronization primitives to prevent 
accessing the variable at the same 
time. 



BLAS
For prototyping numerical linear algebra

A key tool within linear algebra and machine learning are
two ancient specifications, known as:

BLAS (``Basic Linear Algebra Subprograms''),
which covers vector addition, dot products, and linear combinations (this dates 
back to 1979).
Level 2 added support for vector-matrix operations (1986),
and level 3 added support for matrix-matrix operations and
block-partitioned algorithms (1988).

LAPACK (``Linear Algebra Package''), which
covers matrix factorizations (LU, Cholesky and QR),
eigenvalue and least squares solvers.



BLAS
For prototyping numerical linear algebra

BLAS and LAPACK subroutines are all named naaop, where:

n suggests whether to use real floating-point numbers in
single (S) or double (D) precision,
or complex number with single (C)
or double (Z) precision.
aa denotes the assumptions on the matrix, e.g.,
diagonal (DI) specified by a vector, and
general matrix (GE).
op denotes the algorithm, e.g.,
matrix-matrix multiplication (MM), and
solving linear system (SV).

SGEMM is thus matrix-matrix multiplication of general dense matrices in single 
precision, and DDOT is vector-vector dot product in double precision.



BLAS
For prototyping numerical linear algebra

http://www.netlib.org/blas/blasqr.pdf



BLAS
For prototyping numerical linear algebra

Most vendors of acclerators maintain their own BLAS
• implementation:
• AMD maintains rocBLAS,
• Apple maintains Accelerate,
• ARM maintains Arm Performance Libraries,
• Intel develops Intel Math Kernel Library (iMKL), and
• NVIDIA maintains cuBLAS and NVBLAS.
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Most vendors of acclerators maintain their own BLAS
• implementation:
• AMD maintains rocBLAS,
• Apple maintains Accelerate,
• ARM maintains Arm Performance Libraries,
• Intel develops Intel Math Kernel Library (iMKL), and
• NVIDIA maintains cuBLAS and NVBLAS.

Notable open-source implementation focussing mostly on CPUs are 
ATLAS, BLIS (BLAS-like Library Instantiation Software), and OpenBLAS.
A special mention should be devoted to the ATLAS library, which 
automatically optimizes itself for any architecture, including complicated 
cache hierarchies.



BLAS
For prototyping numerical linear algebra

For C++ , there are multiple implementations of BLAS, loosely 
speaking.

Libraries such as Armadillo, eigen, Intel OneAPI, LAPACK++, uBlas
are sometimes linked against ancient Fortran code, but provide 
decent C++ interfaces.

eigen and CLBlast actually provide C++ implementations too.

Intel OneAPI Mathematical Kernels comes with excellent 
documentation, examples, and support, but rather cumbersome 
naming conventions.
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In contrast, Boost.org uBlas provides a much more modern C++20-
only syntax, and can be linked to arbitrary vendor-provided BLAS 
library.
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BLAS
For prototyping numerical linear algebra

As you may know, the tensor 
computations underlie much of modern 
machine learning, in the form of training 
deep neural networks. The TensorFlow 
and PyTorch are key contenders 
there, again easy to link against any 
vendor-provided BLAS.

Libraries such as TensorFlow make make 
it possible to exploit much of the 
theoretically available processing power. 
See, for example, Summit, a
supercomputer at the Oak Ridge National 
Laboratory in Tennessee, USA.
It 9,216 POWER9 22-core CPUs 
and 27,648 NVIDIA Tesla V100 GPUs, 
each of which has 5,120 CUDA Cores. In 
total, this means 141+ million cores with 
circa 200 petaFLOPS performance. 
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As you may know, the tensor 
computations underlie much of 
modern machine learning, in the 
form of training deep neural 
networks. The TensorFlow and 
PyTorch are key contenders 
there, again easy to link against 
any vendor-provided BLAS.

Libraries such as TensorFlow 
make make it possible to exploit 
much of the theoretically 
available processing power. 
Consider the scaling for training 
ResNet deep neural network on 
ImageNet benchmark.

https://code.ornl.gov/olcf-analytics/summit/distributed-deep-learning-examples



Parallel Programming
For numerical linear algebra

In the second lecture, we have seen 
that within shared-memory parallel 
programming, we have broadly four 
options:
• Confinement: Do not share memory 

between threads. 
• Immutability: Do not share any 

mutable data between threads. 
• Thread-safe code: Use data types 

with additional guarantees for 
storing any mutable data shared 
between threads, or even better, use 
implementations of algorithms that 
are already parallelized and handle 
the concurrency issues for you.

• Synchronization: Use 
synchronization primitives to prevent 
accessing the variable at the same 
time. 



Matrix-vector Multiplication
The easy part
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Matrix-vector Multiplication
The easy part

Embarrassingly parallel:
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Matrix-vector Multiplication
The easy part

Can you vectorize this?



Matrix-vector Multiplication
The easy part
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• We could pre-compute helper variables column-wise:
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Matrix-vector Multiplication
The not-so-easy part
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Matrix-vector Multiplication
The not-so-easy part

What is not to like?



• We can reorder the matrices
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Matrix-vector Multiplication
The not-so-easy part
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Matrix-vector Multiplication
The not-so-easy part



Matrix-vector Multiplication
Trivial tricks are best



Matrix-vector Multiplication
The Actual Implementations



Matrix-Matrix Multiplication
The definition
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Also embarrassingly parallel:

but scheduling is a lot harder. 



Matrix-Matrix Multiplication
The first parallel version
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Matrix-Matrix Multiplication
The second parallel version



Matrix-Matrix Multiplication
The second parallel version



Matrix-Matrix Multiplication
The second parallel version



Solving Linear Systems
Gauss elimination

a11 a12 a13 b1

a21 … b2

… b3

a11 a12 a13 b1

0 a´22 a´23 b´2

0 0 a´33 b´3



Solving Linear Systems
Gauss elimination



Solving Linear Systems
Remember the Ongoing Evlution of OpenMP?

“The Ongoing Evolution of OpenMP”
https://www.osti.gov/pages/servlets/purl/1465188



Solving Linear Systems
Via Solving Least Squares



Solving Linear Systems
Via Solving Least Squares



Optimization
Parallel Aspects

https://pt.slideshare.net/ShaleenGupta6/parallel-coordinate-descent-algorithms



Next Steps

Parallel Programming (B4M35PAG)
GPGPUs (B4M39GPU)
Bc Dissertation
State Exams
MSc Dissertation
State Exams
…
PhD 
…
Real-world?



Next Steps
State Exams

Hardwarová podpora pro paralelní výpočty: 

(super)skalární architektury, pipelining, 

spekulativní vyhodnocování, vektorové

instrukce, vlákna, procesy, GPGPU. 

Hierarchie cache pamětí.

Komplikace v paralelním programování: 

souběh (race condition), uváznutí (deadlock), 

iluze sdílení (false sharing).

Podpora paralelního programování v C a 

C++: pthreads, thread, jthread, atomic, 

mutex, lock_guard.

Podpora paralelního programování v 

OpenMP: sériově-paralelní model uspořádání

vláken (fork-join), paralelizovatelná úloha

(task region), různé implementace

specifikace. Direktivy parallel, for, section, 

task, barrier, critical, atomic.

Techniky dekompozice programu: statické a 

paralelní rozdělení práce. Threadpool a fronta

úkolů. Balancování a závislosti

(dependencies).

Techniky dekompozice programu na

příkladech z řazení: quick sort, merge sort.

Techniky dekompozice programu na

příkladech z numerické lineární algebry a 

strojového učení: násobení matice vektorem, 

násobení dvou matic, řešení systému

lineárních rovnic.


