
Summary of C++ Constructs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 12

PRG(A) – Programming in C

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 1 / 64

Overview of the Lecture

■ Part 1 – Summary of C++ Constructs
Quick Overview How C++ Differs from C

Classes and Objects

Constructor/Destructor

Relationship

Polymorphism

Inheritance and Composition

■ Part 2 – Standard Template Library (in C++)
Templates

Standard Template Library (STL)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 2 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Part I

Part 1 – Summary of C++ Constructs

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 3 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Resources – Books

The C++ Programming Language,
Bjarne Stroustrup, Addison-Wesley Professional, 2013, ISBN
978-0321563842

Programming: Principles and Practice Using C++, Bjarne
Stroustrup, Addison-Wesley Professional, 2014, ISBN
978-0321992789

Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, Scott Meyers, Addison-Wesley Professional, 2005, ISBN
978-0321334879

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 5 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Objects Oriented Programming (OOP)

OOP is a way how to design a program to fulfill requirements and make the
sources easy maintain.

■ Abstraction – concepts (templates) are organized into classes
■ Objects are instances of the classes

■ Encapsulation
■ Object has its state hidden and provides interface to communicate with other objects by

sending messages (function/method calls)
■ Inheritance

■ Hierarchy (of concepts) with common (general) properties that are further specialized in
the derived classes

■ Polymorphism
■ An object with some interface could replace another object with the same interface

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 6 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

C++ for C Programmers

■ C++ can be considered as an “extension” of C with additional concepts to create more
complex programs in an easier way

■ It supports to organize and structure complex programs to be better manageable with
easier maintenance

■ Encapsulation supports “locality” of the code, i.e., provide only public interfance and
keep details “hidden”

■ Avoid unintentional wrong usage because of unknown side effects
■ Make the implementation of particular functionality compact and easier to maintain
■ Provide relatively complex functionality with simple to use interface

■ Support a tighter link between data and functions operating with the data, i.e., classes
combine data (properties) with functions (methods)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 7 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

From struct to class
■ struct defines complex data types for which we can define particular functions, e.g., alloca-

tion(), deletion(), initialization(), sum(), print() etc.
■ class defines the data and function working on the data including the initialization (constructor)

and deletion (destructor) in a compact form
■ Instance of the class is an object, i.e., a variable of the class type

typedef struct matrix {
int rows;
int cols;
double *mtx;

} matrix_s;

matrix_s* allocate(int r, int c);
void release(matrix_s **matrix);
void init(matrix_s *matrix);
void print(const matrix_s *matrix);

matrix_s *matrix = allocate(10, 10);
init(matrix);
print(matrix);
release(matrix);

class Matrix {
const int ROWS;
const int COLS;
double *mtx;
public:
Matrix(int r, int c);
~Matrix(); //destructor
void init(void);
void print(void) const;

};
{

Matrix matrix(10, 10);
matrix.init();
matrix.print();

} // will call destructor

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 8 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Dynamic allocation
■ malloc() and free() and standard functions to allocate/release memory of the particular

size in C
matrix_s *matrix = (matrix_s*)malloc(sizeof(matrix_s));
matrix->rows = matrix->cols = 0; //inner matrix is not allocated
print(matrix);
free(matrix);

■ C++ provides two keywords (operators) for creating and deleting objects (variables at the
heap) new and delete

Matrix *matrix = new Matrix(10, 10); // constructor is called
matrix->print();
delete matrix;

■ new and delete is similar to malloc() and free(), but
■ Variables are strictly typed and constructor is called to initialize the object
■ For arrays, explicit calling of delete[] is required

int *array = new int[100]; // aka (int*)malloc(100 * sizeof(int))
delete[] array; // aka free(array)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 9 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Reference
■ In addition to variable and pointer to a variable, C++ supports references, i.e., a reference to

an existing object
■ Reference is an alias to existing variable, e.g.,

int a = 10;
int &r = a; // r is reference (alias) to a
r = 13; // a becomes 13

■ It allows to pass object (complex data structures) to functions (methods) without copying them
Variables are passed by valueint print(Matrix matrix)

{// new local variable matrix is allocated
// and content of the passed variable is copied

}
int print(Matrix *matrix) // pointer is passed
{

matrix->print();
}
int print(Matrix &matrix)
{

// reference is passed – similar to passing pointer
matrix.print(); //but it is not pointer and . is used

}
Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 10 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Class
Describes a set of objects – it is a model of the objects and defines:

■ Interface – parts that are accessible from outside
public, protected, private

■ Body – implementation of the interface (methods)
that determine the ability of the objects of the class

Instance vs class methods

■ Data Fields – attributes as basic and complex data
types and structures (objects) Object composition
■ Instance variables – define the state of the object of the

particular class
■ Class variables – common for all instances of the

particular class

// header file - definition of the class
type

class MyClass {
public:

/// public read only
int getValue(void) const;

private:
/// hidden data field
/// it is object variable
int myData;

};

// source file - implementation of the
methods

int MyClass::getValue(void) const
{

return myData;
}

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 12 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Object Structure

■ The value of the object is structured, i.e., it consists of particular values of the object
data fields which can be of different data type

Heterogeneous data structure unlike an array

■ Object is an abstraction of the memory where particular values are stored
■ Data fields are called attributes or instance variables

■ Data fields have their names and can be marked as hidden or accessible in the class
definition

Following the encapsulation they are usually hidden
Object:

■ Instance of the class – can be created as a variable declaration or by dynamic
allocation using the new operator

■ Access to the attributes or methods is using . or -> (for pointers to an object)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 13 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Creating an Object – Class Constructor
■ A class instance (object) is created by calling a constructor to initialize values of the

instance variables Implicit/default one exists if not specified

■ The name of the constructor is identical to the name of the class
Class definition

class MyClass {
public:

// constructor
MyClass(int i);
MyClass(int i, double d);

private:
const int _i;
int _ii;
double _d;

};

Class implementation
MyClass::MyClass(int i) : _i(i)
{

_ii = i * i;
_d = 0.0;

}
// overloading constructor
MyClass::MyClass(int i, double d) : _i(i)
{

_ii = i * i;
_d = d;

}

{
MyClass myObject(10); //create an object as an instance of MyClass

} // at the end of the block, the object is destroyed
MyClass *myObject = new MyClass(20, 2.3); //dynamic object creation
delete myObject; //dynamic object has to be explicitly destroyed

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 14 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Relationship between Objects

■ Objects may contain other objects
■ Object aggregation / composition
■ Class definition can be based on an existing class definition – so, there is a relationship

between classes
■ Base class (super class) and the derived class
■ The relationship is transferred to the respective objects as instances of the classes

By that, we can cast objects of the derived class to class instances of ancestor

■ Objects communicate between each other using methods (interface) that is accessible
to them

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 15 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Access Modifiers

■ Access modifiers allow to implement encapsulation (information hiding) by specifying
which class members are private and which are public:

■ public: – any class can refer to the field or call the method
■ protected: – only the current class and subclasses (derived classes) of this class have

access to the field or method
■ private: – only the current class has the access to the field or method

Modifier Access
Class Derived Class “World”

public ! ! !
protected ! ! ✗
private ! ✗ ✗

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 16 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Constructor and Destructor

■ Constructor provides the way how to initialize the object, i.e., allocate resources
Programming idiom – Resource acquisition is initialization (RAII)

■ Destructor is called at the end of the object life
■ It is responsible for a proper cleanup of the object
■ Releasing resources, e.g., freeing allocated memory, closing files

■ Destructor is a method specified by a programmer similarly to a constructor
However, unlike constructor, only single destructor can be specified

■ The name of the destructor is the same as the name of the class but it starts with the
character ∼ as a prefix

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 18 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Constructor Overloading
■ An example of constructor for creating an instance of the complex number
■ Only a real part or both parts can be specified in the object initialization

class Complex {
public:

Complex(double r)
{

re = r;
}
Complex(double r, double i)
{

re = r;
im = i;

}
~Complex() { /* nothing to do in destructor */ }

private:
double re;
double im;

};
Both constructors shared the duplicate code, which we like to avoid!

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 19 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Constructor Calling 1/3
■ We can create a dedicated initialization method that is called from different

constructors
class Complex {

public:
Complex(double r, double i) { init(r, i); }
Complex(double r) { init(r, 0.0); }
Complex() { init(0.0, 0.0); }

private:

void init(double r, double i)
{

re = r;
im = i;

}
private:

double re;
double im;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 20 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Constructor Calling 2/3

■ Or we can utilize default values of the arguments that are combined with initializer list
here

class Complex {
public:

Complex(double r = 0.0, double i = 0.0) : re(r), im(i) {}
private:

double re;
double im;

};

int main(void)
{

Complex c1;
Complex c2(1.);
Complex c3(1., -1.);
return 0;

}

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 21 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Constructor Calling 3/3

■ Alternatively, in C++11, we can use delegating constructor

class Complex {
public:

Complex(double r, double i)
{

re = r;
im = i;

}
Complex(double r) : Complex(r, 0.0) {}
Complex() : Complex(0.0, 0.0) {}

private:
double re;
double im;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 22 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Constructor Summary
■ The name is identical to the class name
■ The constructor does not have return value

Not even void

■ Its execution can be prematurely terminated by calling return
■ It can have parameters similarly as any other method (function)
■ We can call other functions, but they should not rely on initialized object that is being

done in the constructor
■ Constructor is usually public
■ (private) constructor can be used, e.g., for:

■ Classes with only class methods
Prohibition to instantiate class

■ Classes with only constants
■ The so called singletons

E.g., “object factories”

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 23 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Relationship between Objects
■ Objects can be in relationship based on the

■ Inheritance – is the relationship of the type is
Object of descendant class is also the ancestor class

■ One class is derived from the ancestor class
Objects of the derived class extends the based class

■ Derived class contains all the field of the ancestor class
However, some of the fields may be hidden

■ New methods can be implemented in the derived class
New implementation override the previous one

■ Derived class (objects) are specialization of a more general ancestor (super) class
■ An object can be part of the other objects – it is the has relation

■ Similarly to compound structures that contain other struct data types as their data fields,
objects can also compound of other objects

■ We can further distinguish
■ Aggregation – an object is a part of other object
■ Composition – inner object exists only within the compound object

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 25 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Aggregation/Composition
■ Aggregation – relationship of the type “has” or “ it is composed

■ Let A be aggregation of B C , then objects B and C are contained in A
■ It results that B and C cannot survive without A

In such a case, we call the relationship as composition
Example of implementation
class GraphComp { // composition

private:
std::vector<Edge> edges;

};

class GraphComp { // aggregation
public:

GraphComp(std::vector<Edge>& edges) : edges(
edges) {}

private:
const std::vector<Edge>& edges;

};

struct Edge {
Node v1;
Node v2;

};

struct Node {
Data data;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 26 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Categories of the Inheritance

■ Strict inheritance – derived class takes all of the superclass and adds own methods and
attributes. All members of the superclass are available in the derived class. It strictly
follows the is-a hierarchy

■ Nonstrict inheritance – the subclass derives from the a superclass only certain
attributes or methods that can be further redefined

■ Multiple inheritance – a class is derived from several superclasses

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 27 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Inheritance – Summary

■ Inheritance is a mechanism that allows
■ Extend data field of the class and modify them
■ Extend or modify methods of the class

■ Inheritance allows to
■ Create hierarchies of classes
■ “Pass” data fields and methods for further extension and modification
■ Specialize (specify) classes

■ The main advantages of inheritance are
■ It contributes essentially to the code reusability

Together with encapsulation!

■ Inheritance is foundation for the polymorphism

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 28 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Polymorphism

■ Polymorphism can be expressed as the ability to refer in a same way to different objects
We can call the same method names on different objects

■ We work with an object whose actual content is determined at the runtime
■ Polymorphism of objects - Let the class B be a subclass of A, then the object of the B

can be used wherever it is expected to be an object of the class A
■ Polymorphism of methods requires dynamic binding, i.e., static vs. dynamic type of the

class
■ Let the class B be a subclass of A and redefines the method m()
■ A variable x is of the static type B, but its dynamic type can be A or B
■ Which method is actually called for x.m() depends on the dynamic type

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 30 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Virtual Methods – Polymorphism and Inheritance

■ We need a dynamic binding for polymorphism of the methods
■ It is usually implemented as a virtual method in object oriented programming

languages
■ Override methods that are marked as virtual has a dynamic binding to the particular

dynamic type

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 31 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Overriding without Virtual Method 1/2
#include <iostream>
using namespace std;
class A {

public:
void info()
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // without the dynamic binding, method of the class A is called
delete ta; delete b;

clang++ demo-novirtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class A

lec12/demo-novirtual.cc
Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 32 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Overriding with Virtual Method 2/2
#include <iostream>
using namespace std;
class A {

public:
virtual void info() // Virtual !!!
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};
A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // the dynamic binding exists, method of the class B is called
delete ta; delete b;

clang++ demo-virtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class B

lec12/demo-virtual.cc
Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 33 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Derived Classes, Polymorphism, and Practical Implications

■ Derived class inherits the methods and data fields of the superclass, but it can also
add new methods and data fields

■ It can extend and specialize the class
■ It can modify the implementation of the methods

■ An object of the derived class can be used instead of the object of the superclass, e.g.,
■ We can implement more efficient matrix multiplication without modification of the whole

program
We may further need a mechanism to create new object based on the dynamic type, i.e.,
using the newInstance virtual method

■ Virtual methods are important for the polymorphism
■ It is crucial to use a virtual destructor for a proper destruction of the object

E.g., when a derived class allocate additional memory

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 34 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Virtual Destructor 1/4
#include <iostream>
class Base {

public:
Base(int capacity) {

std::cout << "Base::Base -- allocate data" << std::endl;
data = new int[capacity];

}
virtual ~Base() { // virtual destructor is important

std::cout << "Base::~Base -- release data" << std::endl;
delete[] data;

}
protected:

int *data;
};

lec12/demo-virtual_destructor.cc

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 35 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Virtual Destructor 2/4

class Derived : public Base {
public:

Derived(int capacity) : Base(capacity) {
std::cout << "Derived::Derived -- allocate data2" << std::endl;
data2 = new int[capacity];

}
~Derived() {

std::cout << "Derived::~Derived -- release data2" << std::endl;
delete[] data2;

}
protected:

int *data2;
};

lec12/demo-virtual_destructor.cc

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 36 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Virtual Destructor 3/4
■ Using virtual destructor all allocated data are properly released
std::cout << "Using Derived " << std::endl;
Derived *object = new Derived(1000000);
delete object;
std::cout << std::endl;

std::cout << "Using Base" << std::endl;
Base *object = new Derived(1000000);
delete object;

lec12/demo-virtual_destructor.cc

clang++ demo-virtual_destructor.cc && ./a.out

Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Derived::~Derived -- release data2
Base::~Base -- release data Base::~Base -- release data

Both desctructors Derived and Base are called

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 37 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Virtual Destructor 4/4
■ Without virtual destructor, e.g„

class Base {
...
~Base(); // without virtualdestructor

};
Derived *object = new Derived(1000000);
delete object;
Base *object = new Derived(1000000);
delete object;

■ Only both constructors are called, but only destructor of the Base class in the second
case Base *object = new Derived(1000000);
Using Derived Using Base
Base::Base -- allocate data Base::Base -- allocate data
Derived::Derived -- allocate data2 Derived::Derived -- allocate data2
Derived::~Derived -- release data2 Base::~Base -- release data
Base::~Base -- release data Only the desctructor of Base is called

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 38 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Inheritance and Composition

■ A part of the object oriented programming is the object oriented design (OOD)
■ It aims to provide “a plan” how to solve the problem using objects and their relationship
■ An important part of the design is identification of the particular objects
■ their generalization to the classes
■ and also designing a class hierarchy

■ Sometimes, it may be difficult to decides
■ What is the common (general) object and what is the specialization, which is important

step for class hierarchy and applying the inheritance
■ It may also be questionable when to use composition

■ Let show the inheritance on an example of geometrical objects

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 40 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 1/2
class Rectangle {

public:
Rectangle(double w, double h) : width(w), height(h) {}
inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDiagonal(void) const
{

return sqrt(width*width + height*height);
}

protected:
double width;
double height;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 41 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 2/2
class Cuboid : public Rectangle {

public:
Cuboid(double w, double h, double d) :

Rectangle(w, h), depth(d) {}
inline double getDepth(void) const { return depth; }
inline double getDiagonal(void) const
{

const double tmp = Rectangle::getDiagonal();
return sqrt(tmp * tmp + depth * depth);

}

protected:
double depth;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 42 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

■ Class Cuboid extends the class Rectangle by the depth
■ Cuboid inherits data fields width a height
■ Cuboid also inherits „getters” getWidth() and getHeight()
■ Constructor of the Rectangle is called from the Cuboid constructor

■ The descendant class Cuboid extends (override) the getDiagonal() methods
It actually uses the method getDiagonal() of the ancestor Rectangle::getDiagonal()

■ We create a “specialization” of the Rectangle as an extension Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 43 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 1/2
■ Rectangle is a cuboid with zero depth
class Cuboid {

public:
Cuboid(double w, double h, double d) :

width(w), height(h), depth(d) {}

inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDepth(void) const { return depth; }

inline double getDiagonal(void) const
{

return sqrt(width*width + height*height + depth*depth);
}

protected:
double width;
double height;
double depth;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 44 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 2/2

class Rectangle : public Cuboid {

public:
Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}

};

■ Rectangle is a “cuboid” with zero depth
■ Rectangle inherits all data fields: with, height, and depth
■ It also inherits all methods of the ancestor

Accessible can be only particular ones

■ The constructor of the Cuboid class is accessible and it used to set data fields with
the zero depth

■ Objects of the class Rectangle can use all variable and methods of the Cuboid class

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 45 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be Descendant of
Rectangle?

1. Cuboid is descendant of the rectangle
■ “Logical” addition of the depth dimensions, but methods valid for the rectangle do not

work of the cuboid
E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
■ Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero depth”
■ Inefficient implementation – every rectangle is represented by 3 dimensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 46 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Relationship of the Ancestor and Descendant is of the type “is-a”

■ Is a straight line segment descendant of the point?
■ Straight line segment does not use any method of a point

is-a?: segment is a point ? → NO → segment is not descendant of the point

■ Is rectangle descendant of the straight line segment?
is-a?: NO

■ Is rectangle descendant of the square, or vice versa?
■ Rectangle “extends” square by one dimension, but it is not a square
■ Square is a rectangle with the width same as the height

Set the width and height in the constructor!

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 47 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Substitution Principle

■ Relationship between two derived classes
■ Policy

■ Derived class is a specialization of the superclass
There is the is-a relationship

■ Wherever it is possible to sue a class, it must be possible to use the descendant in such a
way that a user cannot see any difference

Polymorphism
■ Relationship is-a must be permanent

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 48 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Composition of Objects

■ If a class contains data fields of other object type, the relationship is called
composition

■ Composition creates a hierarchy of objects, but not by inheritance
Inheritance creates hierarchy of relationship in the sense of descendant / ancestor

■ Composition is a relationship of the objects – aggregation – consists / is compound
■ It is a relationship of the type “has”

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 49 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Composition 1/3

■ Each person is characterized by attributes of the Person class
■ name (string)
■ address (string)
■ birthDate (date)
■ graduationDate (date)

■ Date is characterized by three attributes Datum (class Date)
■ day (int)
■ month (int)
■ year (int)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 50 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Composition 2/3

#include <string>

class Person {
public:
std::string name;
std::string address;
Date birthDate;
Date graduationDate;

};

class Date {
public:

int day;
int month;
int year;

};

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 51 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Example – Composition 3/3

Person

std::string name std::string address

Date birthDate Date graduationDate

Date birthDate

int month int dayint year

Date graduationDate

int month int dayint year

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 52 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Inheritance vs Composition

■ Inheritance objects:
■ Creating a derived class (descendant, subclass, derived class)
■ Derived class is a specialization of the superclass

■ May add variables (data fields) Or overlapping variables (names)
■ Add or modify methods

■ Unlike composition, inheritance changes the properties of the objects
■ New or modified methods
■ Access to variables and methods of the ancestor (base class, superclass)

If access is allowed (public/protected)

■ Composition of objects is made of attributes (data fields) of the object type
It consists of objects

■ A distinction between composition an inheritance
■ „Is” test – a symptom of inheritance (is-a)
■ „Has” test – a symptom of composition (has)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 53 / 64

Quick Overview How C++ Differs from C Classes and Objects Constructor/Destructor Relationship Polymorphism Inheritance and Composition

Inheritance and Composition – Pitfalls

■ Excessive usage of composition and also inheritance in cases it is not needed leads to
complicated design

■ Watch on literal interpretations of the relationship is-a and has, sometimes it is not
even about the inheritance, or composition

E.g., Point2D and Point3D or Circle and Ellipse

■ Prefer composition and not the inheritance
One of the advantages of inheritance is the polymorphism

■ Using inheritance violates the encapsulation
Especially with the access rights set to the protected

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 54 / 64

Templates Standard Template Library (STL)

Part II

Part 2 – Standard Template Library (STL)

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 55 / 64

Templates Standard Template Library (STL)

Templates

■ Class definition may contain specific data fields of a particular type
■ The data type itself does not change the behavior of the object, e.g., typically as in

■ Linked list or double linked list
■ Queue, Stack, etc.
■ data containers

■ Definition of the class for specific type would be identical except the data type
■ We can use templates for later specification of the particular data type, when the

instance of the class is created
■ Templates provides compile-time polymorphism

In constrast to the run-time polymorphism realized by virtual methods.

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 57 / 64

Templates Standard Template Library (STL)

Example – Template Class

■ The template class is defined by the template keyword with specification of the type
name
template <typename T>
class Stack {

public:
bool push(T *data);
T* pop(void);

};

■ An object of the template class is declared with the specified particular type
Stack<int> intStack;
Stack<double> doubleStack;

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 58 / 64

Templates Standard Template Library (STL)

Example – Template Function

■ Templates can also be used for functions to specify particular type and use type safety
and typed operators

template <typename T>
const T & max(const T &a, const T &b)
{

return a < b ? b : a;
}

double da, db;
int ia, ib;

std::cout << "max double: " << max(da, db) << std::endl;

std::cout << "max int: " << max(ia, ib) << std::endl;

//not allowed such a function is not defined
std::cout << "max mixed " << max(da, ib) << std::endl;

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 59 / 64

Templates Standard Template Library (STL)

STL

■ Standard Template Library (STL) is a library of the standard C++ that provides
efficient implementations of the data containers, algorithms, functions, and iterators

■ High efficiency of the implementation is achieved by templates with compile-type
polymorphism

■ Standard Template Library Programmer’s Guide – https://www.sgi.com/tech/stl/

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 61 / 64

Templates Standard Template Library (STL)

std::vector – Dynamic "C" like array
■ One of the very useful data containers in STL is vector which behaves like C array but allows

to add and remove elements
#include <iostream>
#include <vector>

int main(void)
{

std::vector<int> a;

for (int i = 0; i < 10; ++i) {
a.push_back(i);

}

for (int i = 0; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}

std::cout << "Add one more element" << std::endl;
a.push_back(0);

for (int i = 5; i < a.size(); ++i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

}
return 0;

} lec12/stl-vector.cc

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 62 / 64

Topics Discussed

Summary of the Lecture

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 63 / 64

Topics Discussed

Topics Discussed

■ Classes and objects
■ Constructor/destructor
■ Templates and STL
■ Relationship between objects

■ Aggregation
■ Composition

■ Inheritance – properties and usage in C++
■ Polymorphism – dynamic binding and virtual methods
■ Inheritance and Composition

Jan Faigl, 2021 PRG(A) – Lecture 12: Quick Introduction to C++ (Part 2) 64 / 64

