Coding Examples

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 09
PRG(A) — Programming in C

Overview of the Lecture

® Part 1 — Undefined behaviour and inspecting implementation
Program Compilation
Undefined Behaviour
Comparing C to Machine Code

® Part 2 — Debugging
Debugging

= Part 3 — Examples
Named pipes
Multi-thread Appplication — HW 9
Multi-thread Appplications — PRG Semestral Project

Part |

Part 1 — Undefined behaviour and inspecting
implementation

Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 1 /30 |Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 2 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 3 /30
Program Compilation Program Compilation Program Compilation
Arguments of the main() Function Example of Compilation and Program Execution Example — Program Execution under Shell
= During the program execution, the OS passes to the program the number of = Building the program by the clang compiler — it automatically joins the compilation ® The return value of the program is stored in the variable $7.
arguments (argc) and the arguments (argv). and linking of the program to the file a.out. sh, bash, zsh
In the case we are using OS. d c . o
= The first argument is the name of the program. ang var. ® Example of the program execution with different number of arguments.
® The output file can be specified, e.g., program file var.
1 int main(int argc, char *argv[]) clang var.c -o var /var
2 {
s int v: ® Then, the program can be executed as follows. Jvar; echo $7
> ./var 1
4 v = 10; _ . . .
. V= o+ 1 ® The compilation and execution can be joined to a single command.
6 return argc; clang var.c -o var; . /var ./var 1 2 3; echo $?
7 ¥ ® The execution can be conditioned to successful compilation. 4
lec09/var.c
. . . . clang var.c -o var && ./var
® The program is terminated by the return in the main() function. ./var a; echo $7
= The returned value is passed back to the OS and it can be further use, e.g., to control Programs return value — 0 means OK. 2
the program execution Logical operator && depends on the command interpret, e.g., sh, bash, zsh.
Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 5 /30 |Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 6 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 7/ 30

Program Compilation

Example — Processing the Source Code by Preprocessor

= Using the -E flag, we can perform only the preprocessor step.
gce -E var.c

Alternatively clang -E var.c

1 # 1 "var.c"

2 # 1 "<built-in>"

3 # 1 "<command-line>"

4 # 1 "var.c"

s int main(int argc, char xxargv) {
6 int v;

7 v = 10;

8 v=v+1;

9 return argc;

10 }

lec09/var.c

Jan Faigl, 2023 PRG(A) = Lecture 09: Coding Examples

8 /30

Program Compilation

Example — Compilation of the Source Code to Assembler

® Using the -S flag, the source code can be compiled to Assembler.
clang -S var.c -o var.s

1 .file "var.c" 19 movq %rsi, -16(%rbp)
2 .text . 20 movl $10, -20(%rbp)
i i%‘l’g}l TZmOXSO 21 movl -20(%rbp), %edi
. i . 22 addl $1, Y%edi

Z mal;ype maln’@funCtlon 23 movl '/.edi, -20('/»rbp)

Gmain 24 movl -8(Jrbp), %eax
7 .cfi_startproc 25 popq ’%rbp
s # BB#O: o et

o 27 .Ltmp5:

12 LI;;):}s;,}qu rbp 28 .size main, .Ltmp5-main

.cfi_def_cfa_offset 16 .cfi_endproc

.Ltmp3:

.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmpé4:
.cfi_def_cfa_register %rbp
movl $0, -4(%rbp)

movl Y%edi, -8(%rbp)

1
12
13
14
15
16
17
18

.ident "FreeBSD clang version 3.4.1 (
tags/RELEASE_34/dot1-final 208032)
20140512"

.section ".note.GNU-stack","",
@progbits

Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples

9/ 30

Undefined Behaviour

Undefined Behaviour

= There are some statements that can cause undefined behavior according to the C

standard.
mc=(=a+2) - (b-1);
B j =ik it

® The program may behaves differently according to the used compiler, but may also
not compile or may not run; or it may even crash and behave erratically or produce
meaningless results.

® |t may also happened if variables are used without initialization.

® Avoid statements that may produce undefined behavior!

Jan Faigl, 2023 PRG(A) = Lecture 09: Coding Examples 11/ 30

Program Compilatior Undefined Behaviour Comparing C to Machine Code Program Compilation Undefined Behaviour Comparing C to Machine Code am ¢ ilation Undefined Behaviour Comparing (¢ Nachin:
Example of Undefined Behaviour Compiler Explorer Compiler Explorer — Analysis of the Optimized Code
= C standard does not define the behaviour for the overflow of the integer value (signed) omplerglorsr o) .) o
" Eg, for the complement representation, the expression can be €5 Gl 8 godbotcorgi#g:(g:(: (hcodeEditori (ename: 1 fontScale:14 fontUsep0' L langecwzBwzB select.. < % JWACNENSNOI@ = Effect of the code optimization -02 on the resulting code that contains undefined behavior (integer overflow).
127 + 1 of the char equal to -128 (see 1ec09/demo-1loop_byte.c). {] ERMBKER s - voe- Torvtes [orskomourstaspave | [Fpacktraceintel A5 | shae- Poies @ ot COMBILER ass. oo Tompltes (Greckoutoursaspage] [Sporsas e RoE(e G
™ Representation of integer Va|ueS may depend on the architecture and can be different, Csouce #1 £ X O X Preprocessor Output x86-64 gcc 122 (Edior & 3| xB6-64 goc 122 (Editor #1) & X ax Csources1 £ X O X | x8684 gc 122 (Edor #1) # X %8664 gec 122 (Edtor #1) £ X
X N . A @4 v @c - | a- X86-64 g 12.2 - @) compier optiors. ﬂ A @Smeload +Adinew.- WUm @C x86:64gcc122 - | @ Compleroptions. X86-64 gec 122 - o H
e.g., when binary or inverse code is used.) = D DApysont Ao g Te B 4 o § e e Ohte Yoes (oD Gfe Ghimhs| Oy Oermhs Yhres (i
= Implementation of the defined behaviour can be computationally expensive, and thus 51 eturn num + nun; 3 /7 Unes fllwered T square 1 H 1 main T 1w
. . . 4 3 dnt square(int num) B LD U 4 1474836007 i >= 0; ++i) {2 LoD ! 2 =
the behaviour is not defined by the standard. 2 i emtntunse) ST : Tou DioRo P18 [rbp-a], ed 2 - : Tov owof0 PIR [r0p-41, 0 : .
A N - . . . return nun * nun; mov eax, DWOR rop-. o rbp-
® Behaviour is not defined and depends on the compiler, e.g. clang and gcc without/with v ot s = sqre; s H e 7 : el A
. . . . ’ by .
the optimization -02. 2 [mececumie; 3 maintieis) : s A wm—
: N N N un 3 10 int a = square(10); B 9 add DWORD PTR [rbp-4], eax
® for (int i = 2147483640; i >= 0; ++i) { 22 1 rewn o; ’ b 5 oo “ e D PR et oL
printf ("%i %x\n", i, i); 2 » s rsp, 16 g
lec09/int_overflow-1.c no K mov edi, 10 B s
X L . . " p call square 1 mov eax, DHORD PTR [rbp-4]
Without the optimization, the program prints 8 lines, for -02, the program compiled by clang ® e e 15 pop rbp
e . 1 Tet
prints 9 lines and gcc produces infinite loop. L Lo T T R TP S—— € Bouput (o)
® for (int i = 2147483640; i >= 0; i += 4) { o e Complerorse R ——
printf("i fx\at, 1, 1) h //godbol /2/G3GEz4vb
i - ttps: odbolt.org/z, z4vbv
Lec09/int_overflow-2.c https://godbolt.org/z/K9rieWqcd pei//E &
Program compiled by gcc and -02 crashed. Take a fook to the asm code using the compiler parameter-5
Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 12 / 30 Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 13 / 30 Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 14 / 30
Program Compilation Undefined Behaviour Comparing C to Machine Code Debugging Debugging
Comparing C to Machine Code Debugging the Code
® Principally there are two ways of debugging: stepping (program animation) and log-
ging.
Part || m Stepping is interactive debugging that might be suitable for relatively small, less com-
ar plex codes, and non real-time applications.
= In stepping, we use breakpoints, watches to stop the program execution at certain
Part 2 — Debugg”]g conditions and then inspect variables and stepping next instructions.
= |n C, most of the visual interfaces uses gdb.
= |t might be suitable to compile the program with debugging information, e.g., using -g
flag. clang -g main.c -o main
® Logging can range from simple print messages to stderr to sophisticated loggers,
such as logic.
® We can further enjoy tools such as valgrind for dynamic analysis, specifically for bugs
in mem X F than 2 https://valgrind. .
https://www.youtube.com/watch?v=y0yaJXpAYZQ emory access or more than 20 years, see https://valgrind. org/
Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 16 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 17 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 19 / 30
Debugging Debugging Named pipes Multi-thread Appplication — HW 9 Multi-thread Appplications — PRG Semestral Project
Debugging using gdb (or VS Code) Example of using valgrind
= [nteractive example of debugging or watch the available examples and tutorials.
#include <stdio.h> $ clang -g mem_val.c -o mem_val
#include <stdlib.h> $ valgrind ./mem_val
int main(void) Invalid write of size 4 P ”|
at 0x201999: main (mem_val.c:9) art
int *a = malloc(2 * sizeof *a); ==87826== Address 0x5400048 is O bytes after
a block of size 8 alloc'd
for (int i = 0; i < 3; ++i) { ==87826== at 0x4853B74: malloc (in /usr/ Part 3 - Examp|es
alil = i; local/libexec/valgrind/vgpreload_memcheck-
amd64-freebsd.so)
for (int i = 05 i < 3; ++i) { 87826: by 0x201978: main (mem_val.c:6)
printf ("4d\n", alil); 87826
Give me fifteen 3}
o oot st ot e es and I'll -
//free(a); 0
return 0;
N Llec09/mem_val.c
= CppCon 2015: Greg Law " Give me 15 minutes & I'll change your view of GDB." = Try to compile the program with and w/o -g.
. . . .
https://www. youtube . com/watch?v=PorfLSr3DDI See the valgrind output with and w/o calling free ().
Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 20 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 21 /30 | Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 22 / 30

Named pipes

Communication using Named Pipes

Implement two applications main and module that communicates through named
pipes. lec09/pipes/create_pipes.sh

lec09/pipes/prg_lec09_main.c, lec09/pipes/prg-lecO9-module.c

module opens pipe /tmp/prg-lec09.pipe for reading.

main opens pipe /tmp/prg-lec09.pipe for writting.

® The applications communicate using simple character orienter protocol.
m ’s’ —stop.
= e’ —enable (start).
= b’ - bye.
m ’1°—’57 — set sleep period to 50 ms, 100 ms, 200 ms, 500 ms, 1000 ms.
= The pipe can be opened using functions from the prg_io_nonblock library.

lec09/pipes/prg_io_nonblock.h, lec09/pipes/prg_io_nonblock.c

Examine the provide code and test it. The example is without threads.

Used in HW 9 (PRGA) and semestral project

Jan Faigl, 2023 PRG(A) = Lecture 09: Coding Examples 24 / 30

Multi-thread Appplication — HW 9

Remote Control of Signal Generator and Plot Visualization — HW 9

= Implement multi-thread application with sepa-
rate threads for sources of asynchronous events.

= User input from stdin (keyboard).
= Pipe reading from the signal generator.

Use simple OpenGL-based visualization otk.

Implement the main program logic in the main
(boss) thread using event queue.
= The main thread reads from the queue.
= The secondary threads (keyboard and
pipe) write to the queue.

y
0
1]
0
£
F

400
[-]

The main thread manages output resources

(visualization, write to pipe).
Eventually also stdout or even stderr, which
is, however, not required.

Use the example of multi-thread application

from Lecture 8.

Jan Faigl, 2023

PRG(A) — Lecture 09: Coding Examples

https://cu.fel.cvut.cz/wiki/courses/bab36prga/hu/hwd

https://cw.fel.cvut.cz/wiki/courses/bab36prga/hu/hudhints

26 /

30

Multi-thread Appplications — PRG Semestral Project

Remote Control of Computational Application (Module) — Semetral Project

® |mplement multi-thread application with sepa-
rate threads for sources of asynchronous events.

= User input from stdin (keyboard).
= Pipe reading from the computational module.

Use simple visualization using sdl.

Implement the main program logic in the main
(boss) thread using event queue.
® The main thread reads from the queue.
= The secondary threads (keyboard and
pipe) write to the queue.

The main thread manages output resources
(visualization, write to pipe).

Eventually also stdout or even stderr, which

is, however, not required.
Use the example of multi-thread application
from Lecture 8.

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/semestral-project/start

Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 28 / 30

Summary of the Lecture

Jan Faigl, 2023 PRG(A) — Lecture 09: Coding Examples 29 / 30

Topics Discussed

Topics Discussed

Program compilation.

Undefined behaviour.

Comments on debugging.

Named pipes.
PRGA's HW 9 and PRG's semetral project.

Next: ANSI C, C99, C11 — differences and extensions

Jan Faigl, 2023 PRG(A) = Lecture 09: Coding Examples

