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(Re-)introduction uncertainty/probability

I Markov Decision Processes (MDP) – uncertainty about outcome of actions

I Now: uncertainty may be also associated with states
I Different states may have different prior probabilities.
I The states s ∈ S may not be directly observable.
I They need to be inferred from features x ∈ X .

I This is addressed by the rules of probability (such as Bayes theorem) and leads on to
I Bayesian classification
I Bayesian decision making
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Notes

Just a reminder: MDPs, value iteration and policy iteration methods. We were looking for an optimal policy

π : S → A.



Rules of probability and notation I

I random variables X ,Y

I xi where i = 1, ...,M – values taken by variable X

I yj where j = 1, ..., L – values taken by variable Y

I P(X = xi ,Y = yi ) – probability that X takes the value xi and Y takes yi –
joint probability

I P(X = xi ) – probability that X takes the value xi
I Sum rule of probability :

I P(X = xi ) =
∑L

j=1 P(X = xi ,Y = yj)

I P(X = xi ) is sometimes called marginal probability – obtained by marginalizing / summing
out the other variables

I general rule, compact notation: P(X ) =
∑

Y P(X ,Y )
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Notes

This and the following slides are just to formally recap what we learned when discussing boxes and fruits.



Rules of probability and notation II
I Conditional probability : P(Y = yj |X = xi )

I Product rule of probability :
I P(X = xi ,Y = yi ) = P(Y = yj |X = xi )P(X = xi )
I general rule, compact notation: P(X ,Y ) = P(Y |X )P(X )

I Bayes theorem :
I from P(X ,Y ) = P(Y ,X ) and product rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

P(disease|symptoms) =
P(symptoms|disease)× P(disease)

P(symptoms)

posterior =
likelihood × prior

evidence

I Independence : P(X ,Y ) = P(X )P(Y ) 4 / 26

Notes

What does is mean when we say that random variables X and Y are independent?



Decision example: Insure or not? (from late 1980s) [5]
A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

I Was the doctor right?

I Was the insurance company rational?

What the doctor (and the company) knew:

I HIV test falsely positive only in 1 case out of 1000.

What is the probability the man is infected?

A: 1
1000

B: 999
1000

C: Don’t know yet, more info needed, but less than 1
2

D: Don’t know yet, more info needed, but more than 1
2

I Heterosexual male, has family, no drugs, no risk behavior.
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Notes

Equations/formulas are simple but not easy to (fully) understand.

• Doctor: P(positive test | healthy) = 1
1000

but this is the
likelihood which we learn before the patient’s diagnosis
(classification).

• More interesting and important is to know:
P(healthy | positive test) (posterior).

• Think about 10000 samples of heterosexual males, family,
. . . . Statistically, there is just 1 HIV positive among them.

• Assume P(negative test | infected)→ 0. (false negative rate)

• 1 person HIV positive will be tested positive, but also 10
other healthy persons will be tested positive. Hence
P(healthy | positive test) = 10/11.

• Or, for the doctor: P(infected | positive test) = 1
11

and not
999
1000

.

• The fact that a disease is rare matters a lot!



Decision: guilty or not? (people of CA vs Collins, 1968) [5]
I Robbery, LA 1964, fuzzy evidence of the offenders:

I female, around 65 kg
I wearing something dark
I hair of light color, between light and dark blond, in

a ponytail

I At the same time, additional evidence close to the
crime scene:

I loud scream, yelling, looking at the this direction
. . .

I a woman sitting into a yellow car
I car starts immediately and passes close to the

additional witness
I a black man with beard and moustache was driving

I No more evidence

I Testimony of both the victim and the witness not
unambiguous (didn’t recognize suspects)

I Still, the suspects were sentenced to jail.
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Notes
Wrong use of independence assumption:

P(yellow car) = 1/10

P(man with moustache) = 1/4

P(black man with beard) = 1/10

P(woman with pony tail) = 1/10

P(woman blond hair) = 1/3

P(mix race pair in a car) = 1/1000

and mistakenly confusing probability

P(randomly selected pair matches discussed characteristics)

giving P = 1/12000000. Think about total California population.

with the needed conditional probability: P(a pair matching characteristics is guilty)

“The court noted that the correct statistical inference would be the probability that no other couple who could

have committed the robbery had the same traits as the defendants given that at least one couple had the identified

traits. The court noted, in an appendix to its decision, that using this correct statistical inference, even if the

prosecutor’s statistics were all correct and independent as he assumed, the probability that the defendants were

innocent would be over 40%.” https://en.wikipedia.org/wiki/People v. Collins

https://en.wikipedia.org/wiki/People_v._Collins


Decision: guilty or not? (people of CA vs Collins, 1968) [5]

P(yellow car) = 1/10

P(man with moustache) = 1/4

P(black man with beard) = 1/10

P(woman with pony tail) = 1/10

P(woman blond hair) = 1/3

P(mix race pair in a car) = 1/1000

Assume (wrong!) mutual indepedence:

P(?) =
1

12, 000, 000

What probability?

A Convicted pair not guilty.

B A randomly selected pair matches characteristics.

C Some other.
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people of CA vs Collins, 1968, [1]
Computed (wrongly):

Pr = P(randomly selected pair matches discussed characteristics) =
1

12, 000, 000

Judge needs:
P(a pair matching characteristics is guilty) =?

P(randomly selected pair does not match) = 1− Pr

possible/existing pairs in California . . .N
P(pair will never appearN) = P(NA) = (1− Pr )N

P(pair will appear at least once in N) = P(ALO) = 1− P(NA) = 1− (1− Pr )N

P(pair will appear exactly once in N) = P(EO) = NPr (1− Pr )N−1

P(pair will appear more than once in N) = P(MTO) = P(ALO)− P(EO)

P(MTO|ALO) = P(MTO,ALO)
P(ALO) = P(MTO)

P(ALO)

P(MTO|ALO) =
1− (1− Pr )N − NPr (1− Pr )N−1

1− (1− Pr )N
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P(MTO|ALO) = f (N); people of CA vs Collins, 1968
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Probabilistic Classification
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Notes



Classification example: What’s the fish?

I Factory for fish processing

I 2 classes s1,2:
I salmon
I sea bass

I Features ~x : length, width, lightness etc.
from a camera
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Notes

• Sea (European) bass, https://en.wikipedia.org/wiki/European bass. (In Czech it is Mǒrčák evropský or
Mǒrský vlk.)

• Salmon, https://en.wikipedia.org/wiki/Salmon. (losos in Czech)

https://en.wikipedia.org/wiki/European_bass
https://en.wikipedia.org/wiki/Salmon


Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi ) (also called attributes)

I Optimal classification of ~x :
δ∗(~x) = arg max

j
P(sj |~x)

I We thus choose the most probable class for a given feature vector .
I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

I Can we do (classify) better?
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Notes

Assuming we know the true P(~x |sj),P(sj),P(~x) we cannot do better! Bayesian classification is optimal!



Decision making under uncertainty
I An important feature of intelligent systems

I make the best possible decision
I in uncertain conditions

I Example: Take a tram OR subway from A to B?
I Tram: timetables imply a quicker route, but adherence uncertain.
I Subway: longer route, but adherence almost certain.

I Example: where to route a letter with this ZIP?

I 15700? 15706? 15200? 15206?
I What is the optimal decision ?

I What is the cost of the decision? What is the associated loss ?
I What is the relation between loss and utility ?
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Notes
There are costs associated with a decision. E.g. at fish packing plant, customers may not mind so much if some
pieces of salmon end up in sea bass cans, but they will be protesting if the opposite happens. So making an
error “one way” has higher cost than “the other way”. This impacts where decision boundaries for classification
should optimally be drawn.

The decision loss can be seen as counterpart of the utility . We want either maximize utitity or minimize loss.

In machine learing and pattern recoginition community, the term loss is used much more frequently.



Introducing decision loss: Coin recognition
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Notes



Recognizing/classifying coins: components

I s ∈ {1, 2, 5, 10, 20, 50} – state - the true value

I x ∈ {0.0, 0.1, · · · , 9.9}[g ] – measurement, observation

I P(s, x) joint probability

I d ∈ {1, 2, 5, 10, 20, 50}– decision, result of the algorithm

How many strategies?:

A 100

B 1006

C 600

D 6100

What is the best strategy?

Loss function `(?)
is a function of:

A s

B s, d

C s, x , d

D d

Strategy d = δ(?)
is a function of:

A x

B s

C s, x
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Notes
P(s, x) think about an Oracle for the moment, we will discuss it more later

We assume 100 possible measurements x ∈ {0.0, 0.1, · · · , 9.9}



Introducing decision loss: What to cook for dinner [4]

I Wife is coming back from work. Husband: what to cook for dinner?

I 3 dishes ( decisions ) in his repertoire:
I nothing . . . don’t bother cooking ⇒ no work but makes wife upset
I pizza . . . microwave a frozen pizza ⇒ not much work but won’t impress
I g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very laborious

I “Hassle” incurred by the individual options depends on wife’s mood.

I For each of the 9 possible situations (3 possible decisions × 3 possible states), the cost is
quantified by a loss function `(d , s):

`(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

The wife’s state of mind is an uncertain state.
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Notes

Was the state known, the decision would be simple.



Example (cont’d), State uncertain, symptoms, . . .

I Husband’s experiment. He tells her he accidentally overtaped their wedding video and
observes her reaction.

I Anticipates 4 possible reactions:
I mild . . . all right, we keep our memories.
I irritated . . . how many times do I have to tell you....
I upset . . . Why did I marry this guy?
I alarming . . . silence

I The reaction is a measurable attribute/symptom ( “feature” ) of the mind state.

I From experience, the husband knows how probable individual reactions are in each state
of mind; this is captured by the joint distribution P(x , s) .

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03
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Notes
Joint distibution. Husband tried similar experiment multiple times, gathered some evidence . . .

Instead of complicated experiment with overtaping the wedding video, think about asking “when are you coming

home?”.



Decision strategy
I Decision strategy : a rule selecting a decision for any given value of the measured

attribute(s).
I i.e. function d = δ(x).
I Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

I How many strategies?
I How to define which strategy is the best? How to sort them by quality?
I Define the risk of a strategy as a mean (expected) loss value .

r(δ) =
∑
x

∑
s

`(s, δ(x))P(x , s)
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Notes
Overall, 34 = 81 possible strategies (3 possible decisions for each of the 4 possible attribute values). There is
some analogy of states and possible actions. Here, we reason about states - which are 3 (state of mind) - from
features which are 4.
Any given value (of measured attribute) . . . Think about any possible state.
Recall MDPs and RL.

• Reward (or penalty) was associated with state or state transition when executing an action R(s, a, s ′).
Similarly here, loss, `(s, δ(x)), is associated with state and decision/action.

• Difference: policy / decision strategy.

– MDP/RL: policy π(s)
– Now: state s not directly observable anymore. Instead, policy / decision strategy, δ(x), needs

to be defined over ther percepts/symptoms/attributes, x.
– s and x need to be linked via P(x , s).



Calculating r(δ) =
∑

x

∑
s `(s, δ(x))P(x , s)

`(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

19 / 26

Notes

• Risk depends on strategy (decisions).

• Strategy (decisions) depends on observation.

• Loss combines decision and state.

• The total weighted average is weighted by joint probability of observation and state.

Calculate r(δ1) and r(δ2), which strategy is better?



Bayes optimal strategy
I The Bayes optimal strategy : one minimizing mean risk.

δ∗ = arg min
δ

r(δ)

I From P(x , s) = P(s|x)P(x) (Bayes rule), we have

r(δ) =
∑
x

∑
s

`(s, δ(x))P(x , s) =
∑
s

∑
x

`(s, δ(x))P(s|x)P(x)

=
∑
x

P(x)
∑
s

`(s, δ(x))P(s|x)︸ ︷︷ ︸
Conditional risk

I The optimal strategy is obtained by minimizing the conditional risk separately for each x :

δ∗(x) = arg min
d

∑
s

`(s, d)P(s|x)
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Optimal strategy: δ∗(x) = arg mind

∑
s `(s, d)P(s|x)

`(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ∗(x) = ?? ?? ?? ??
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Notes
We need to recompute the table of joint probability P(s, x) into table of conditional probabilies P(s|x).
This can be done in two ways. A: Using product rule, P(s|x) = P(s, x)/P(x).

First, to get P(x), we use Sum rule (marginalizing).
x = mild x =irritated x = upset x = alarming

P(x) 0.39 0.40 0.16 0.05
Second, applying product rule, P(s|x) = P(s, x)/P(x).
B: calculating the probability on a “per column basis”.
E.g. for the first cell, A: 0.35/0.39 = 0.897 B: 0.35/(0.35 + 0.04)

P(s|x) x = mild x =irritated x = upset x = alarming

s = good 0.897 0.7 0.438 0.00
s = average 0.103 0.25 0.25 0.4

s = bad 0.00 0.125 0.313 0.6
Having the table of all P(s|x) we just mechanically insert into the equation in the slide title.



Statistical decision making: wrapping up

I Given:
I A set of possible states : S
I A set of possible decisions : D
I A loss function l : D × S → <
I The range X of the attribute
I Distribution P(x , s), x ∈ X , s ∈ S.

I Define:
I Strategy : function δ : X → D
I Risk of strategy δ : r(δ) =

∑
x

∑
s `(s, δ(x))P(x , s)

I Bayes problem:
I Goal: find the optimal strategy δ∗ = arg minδ r(δ)
I Solution: δ∗(x) = arg mind

∑
s `(s, d)P(s|x) (for each x)
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A special case - Bayesian classification
I Bayesian classification is a special case of statistical decision theory:

I Attribute vector ~x = (x1, x2, . . . ): pixels 1, 2, . . . .
I State set S = decision set D = {0, 1, . . . 9}.
I State = actual class, Decision = recognized class
I Loss function:

`(s, d) =

{
0, d = s
1, d 6= s

δ∗(~x) = arg min
d

∑
s

`(s, d)︸ ︷︷ ︸
0 if d=s

P(s|~x) = arg min
d

∑
s 6=d

P(s|~x)

Obviously
∑

s P(s|~x) = 1, then:

P(d |~x) +
∑
s 6=d

P(s|~x) = 1

Inserting into above:

δ∗(~x) = arg min
d

[1− P(d |~x)] = arg max
d

P(d |~x)
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Notes

• Classification as opposed to Decision

• Loss function simply counts errors (misclassifications)

• We consider all errors equally painful!

• More examples during the lab . . .

• The final result is not that surprising, is it? (Is it good or bad?)
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