
Uncertainty, Chance, and Utilities

Tomáš Svoboda and Petr Poš́ık
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Deterministic opponent → stochastic environment
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b1, b2, b3 - stochastic branches, uncertain outcomes of a1 action.

CHANCE nodes are “virtual”, b1, b2, b3 are not actions!
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Why? Actions may fail, . . .

Video: Slipping robot. Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, https://youtu.be/kvEEHNyCHMs
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Why? Action costs not deterministic, . . . , getting to work
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Random variable: Function mapping situation on rails to values T (ri ) = ti :
t1 = T (r1) = 3 mins (free rails)
t2 = T (r2) = 12 mins (accident)
t3 = T (r3) = 8 mins (congestion)

MAX/MIN depends on what the ti options and terminal numbers mean. The goal may be to
get to work as fast as possible.
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Chance nodes values
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?

I Average case, not the worst case.

I Calculate expected utilities . . .

I i.e. take weighted average (expectation) of successors
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Random variables, probability distribution, . . .
I Random variable - a function that maps experiment outcomes to values

I Probability distribution - assignment of probabilities (weights) to the values

I Random variable: T (s) - maps situation on rails to values

I Values of T (s): T (s) ∈ {3, 12, 8}, corresponding to outcomes s (free rails, accident,
congestion)

I Probability distribution: P(T = 3) = 0.3, P(T = 12) = 0.1, P(T = 8) = 0.6

A few reminders from laws of probability, Probabilities:

I always non-negative,

I sum over all possible outcomes is equal to 1.
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Expectations, . . .

How long does it take to go to work by tram?

I Depends on the random variable T with possible values t1, t2, t3 (corresponding to
situation on rails).

I What is the expectation of the time?
Using values t1, t2, t3 of random variable T :

E (T ) = P(t1)t1 + P(t2)t2 + P(t3)t3

Or, using random outcomes r1, r2, r3:

E (T ) = P(r1)T (r1) + P(r2)T (r2) + P(r3)T (r3)

Expected value of a discrete r.v.: Weighted average
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Expectimax
function expectimax(state) return a value

if is-terminal(state): return utility(state)
if state (next agent) is MAX: return max-value(state)
if state (next agent) is CHANCE: return exp-value(state)

end function
function max-value(state) return value v

v ← −∞
for a in actions(state) do

v ← max(v , expectimax(result(state,a)))
end for

end function
function exp-value(state) return value v

v ← 0
for all r ∈ random outcomes do

v ← v + P(r) expectimax(result(state,r))
end for

end function 8 / 33
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How about the Reversi game?

I Is there any space for randomness?

I Is the opponent really greedy and clever enough?

I Hope for chance when there is adversarial world – Dangerous optimism .

I Assuming worst case even if it is not likely – Dangerous pessimism .
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Games with chance and strategy
1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25
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Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574


Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574


Random variable: Throwing two dice

Do we care which die comes first?

What is the probability of , ?1

A 1/24

B 1/36

C 1/18

D 1/6

1Source of dice images: https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574
11 / 33

https://flyclipart.com/dice-clipart-tool-rolling-dice-clipart-248574


Mixing MAX, CHANCE, and MIN nodes
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1. (MAX) I play

2. (MIN) Opponent throws dices

3. (MIN) Opponent plays

4. (MAX) I throw dices

0. (MAX) I throw dices
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Mixing MAX, CHANCE, and MIN nodes
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Mixing layer types - chances inserted
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3 2 2

3
a1 a2

a3
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b3 c1
c2

c3 d1
d2

d3

MIN

Extra random agent that moves after each MAX and MIN agent

expectiminimax(s) =

=


utility(s,max) if is-terminal(s)
maxaexpectiminimax(result(s, a)) if to-play(s) = max
minaexpectiminimax(result(s, a)) if to-play(s) = min∑

r P(r)expectiminimax(result(s, r)) if to-play(s) = chance
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Mixing chance into min/max tree. How big is the tree going to be?
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2 –11–1

I b branching factor

I m maximum depth

I n number of distinct rolls

What is the time complexity of
expectiminimax?

A O(bmn)

B O(bmn)

C O(bmnb)

D O(bmnm)
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Evaluation function

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

I Left: a1 is the best. Right: a2 is the best. Ordering of the (terminal) leaves is the same.
I Scale matters! Not only ordering.
I Can we prune the tree? (α, β like?)
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Pruning expectiminimax tree

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

...... ......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1
I Bounds on terminal utilities needed. Terminal values from −2 to 2.

I Monte Carlo simulation for evaluation of a position (state).
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Where to prune the Expectimax tree

I Assume terminal nodes bounded
to −2 to 2, inclusive

I Going from left to right.

I Which branches can be pruned
out?

71

0.5 0.50.5 0.5

2 2 1 2 0 2 -1 0

Figure 5.18 FILES: figures/pruning.eps (Tue Nov 3 16:23:22 2009). The complete game tree for
a trivial game with chance nodes.
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C D
Assume terminal nodes bounded to −2 to 2, inclusive. Going from left to right. 18 / 33



Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

I Utility tuples

I Each player maximizes its own

I Coalitions, cooperations, competitions may be dynamic

19 / 33



Multi-player games
to move

A

B

C

A
(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,1) (5,1,1) (1, 5, 2) (7, 7,1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

I Utility tuples

I Each player maximizes its own

I Coalitions, cooperations, competitions may be dynamic

19 / 33



Uncertainty recap (enough games, back to the robots/agents)

I Uncertain outcome of an action.

I Robot/Agent may not know the current state!
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Uncertain outcome of an action

Video: Climbing stairs failure, From: http://robotics.fel.cvut.cz/cras/darpa-subt/
21 / 33
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Uncertain, partially observable environment

I Current state s may be unknown, observations e

I Take action a

I Uncertain outcome result(a)

I Probability of outcome s ′ given e is

P(result(a) = s ′|a, e)

I Utility function U(s) corresponds to agent preferences.

I Expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

Amatrice, Italy, 2016. 22 / 33
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Rational agent

Agent’s expected utility of an action a given e:

EU(a|e) =
∑
s′

P(result(a) = s ′|a, e)U(s ′)

What should a rational agent do?
Is it then all solved? Do we know all what we need?

I P(result(a) = s ′|a, e)

I U(s ′)
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Utilities

I Where do utilities come from?

I Does averaging make sense?

I Do they exist?

I What if our preferences can’t be described by utilities?
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Agent/Robot Preferences

I Prizes A,B

I Lottery: uncertain prizes L = [p,A; (1− p),B]

Preference, indifference, . . .

I Robot prefers A over B: A � B

I Robot has no preferences: A ∼ B

I in between: A % B
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Rational preferences

I Transitivity: (A � B) ∧ (B � C )⇒ (A � C )

I Completeness: (A � B) ∨ (B � A) ∨ (A ∼ B)

I Continuity: (A � B � C )⇒ ∃p [p,A; 1− p,C ] ∼ B

I Substituability: A ∼ B ⇒ [p,A; 1− p,C ] ∼ [p,B; 1− pC ]. The same for � and ∼.

I Monotonocity: A � B ⇒ (p > q)⇔ [p,A; 1− p,B] � [q,A; 1− q,B]. Agent must prefer
a lottery with higher chance to win.

I Decomposability, compressing compound lotteries into one:
[p,A; 1− p, [q,B; 1− q,C ]] ∼ [p,A; (1− p)q,B; (1− p)(1− q),C ]

Axioms of utility theory.
Motivation: if agent/robot violates an axiom ⇒ irrational agent/robot.
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Transitivity and decomposability
Goods A,B,C and (nontransitive) preferences of an (irrational) agent A � B � C � A.

1¢

1¢

1¢
A

B C

p

q

A

B

C

p

(1–p)

(1–p)(1–q)

(1–q)

A

B

C

is equivalent to

(a) (b)

(1–p)q
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Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A � B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi ):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?

28 / 33



Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A � B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi ):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?

28 / 33



Maximum expected utility principle

Given the rational preferences (constraints), there exists a real valued function u such that:

u(A) > u(B) ⇔ A � B

u(A) = u(B) ⇔ A ∼ B

Expected utility of a Lotery L (outcomes si with probabilities pi ):

L([p1,S1; · · · ; pn, Sn]) =
∑
i

piu(Si )

Proof in [5].
Is a utility u function unique?

28 / 33



Human utilities
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Utility of money

You triumphed in a TV show!

a) Take $1, 000, 000 . . . or

b) Flip a coin and loose all or win $2, 500, 000

30 / 33



Utility of money: human psychology vs. hard data

Slope	is	decreasing
=>	risk-averse	action

Slope	is	increasing
=>	risk-seeking

Empirical	data	over	limited	range
Full	range

debts

h
u
m
a
n
	p
e
rc
e
iv
e
d
	u
ti
lit
y

monetary	value
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