Problem solving by search

Tomas Svoboda, Mat&j Hoffmann, and Petr Posik

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 1, 2023

Notes

1/29



http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Outline

Search problem. What do you want to solve?

State space graphs. How do you formalize/represent the problem? Problem abstraction.

Strategies: which tree branches to choose?

>

| 4

» Search trees. Visualization of the algorithm run.
>

» Strategy/Algorithm properties. Memory, time, . ..
>

Programming infrastructure.

2/29
Notes




Example: Traveling in Romania
[]Oradea

92
g9 Fagaras

[JVaslui

[JHirsova

86
Dobreta ]

Eforie

3/29
Notes
Ok, start with a simple one, almost everybody knows about the navigation - path planning problem. Waze,
Garmin, ... Here, the problem can be transferred into a graph quite directly - a map is a kind of a graph, states

are location in a city.
Can you think about more problems?
For example:

e Touring problems. Special case: Traveling salesperson problem — each city must be visited exactly once.
e Planning robot movements — mobile robot or manipulator.
e VLSI (chip) layout.



Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation: Arad@)
states: position in a city (cities)
actions: at a crossing, select a road
Solution:
Sequence of cities (path)
(action sequence [2])
Cost: Dobreta
Energy, time, tolls, ...

[1Vaslui

Pitesti

[JHirsova

Eforie

4/29
Notes
Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully
understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - outcome of the action.



Example: The 8-puzzle

7 2 4
5 6
8 3 1
Start State

states?

actions?

solution?

cost?

Notes

1 2

4 5

7 8
Goal State

5/29

Also known as n — 1 puzzle.
e States: Location of each of the 8 tiles and the blank.

e Number of states: 9!

e Initial state: any state. (Note that any given goal state can be reached from exactly half of the initial

states.)

e Actions: Movements of the blank space: Left, Right, Up, Down (or a subset of these)

e Solution / goal test: Check whether state matches the goal configuration.

e Path cost: nr. steps in the path (each step costs 1)

Toy problem (3.2.1) from [2].




A Search Problem

State space (including Start/Initial state): position, board configuration,
Actions : drive to, Up, Down, Left ...

Transition model : Given state and action return state (and cost)

vvyyVvVyy

Goal test : Are we done?

6/29

Notes
We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.
Make a mental test: You are a robot, going from home to school. What would be states, actions, transition
model, goal test?

Transition model can be also understood as mapping between actions and outcome.



State Space Graphs

State space graph: a representation of a search problem

» Graph Nodes — states — are abstracted world

configurations

» Goal test — a set of goal nodes

Each state occurs only once in a state (search) space.

> Arcs represent action results ’e @

7/29
Notes

Formalizing a real world problem — (creating) a state space graph — could be a problem in itself. | put creating
into brackets as it may be also infinite.
Close connection to graph algorithms like Dijkstra, Floyd-Warshall.

Graph algorithms assume complete info about the graphs - the main input.
For many real-world problems, the graph is not known in advance.

The state space graph is revealed during the search. The graph serves as an abstraction - mental model -
rather than as an actual data representation.

Many real world problems have too many vertices, think about n — 1 puzzle or chess, number of possible
configurations is enormous.

A solution can be actually quite shallow.



Search Trees

(s)
e @ ’Possible futures‘

> A “what if" tree of plans and their outcomes
» Start node is the root
» Children are successors

» Nodes show/contains states, but correspond to plans that achieve those states

8/29

Notes

e What if decision about an action, repeats ...

e Nodes in the search tree are not the same as the nodes in the state space graph.



State Space Graphs vs. Search Trees

(SHHD
OpC) : :e
@) o[0lC e

How big is the search tree?

9/29

Notes

e 'S’ denotes Start; 'G’ denotes Goal.
e There could be multiple search trees above one state space, depending on the algorithm.

e When going through the unfolding of the search tree (on the right), one may already introduce that there
are leaf nodes at the frontier; one of them always gets expanded.

e A search tree can be much bigger than the state space. (E.g., states 'S’, 'a’,... appear more than once in
the search tree...)

e Note also that search does not have stop when 'G’ is reached for the first time. We may need the shortest
path...

e These properties will be discussed next.



From problem /transition graph to search tree (Romania)

(a) The initial state

Csibin > Climisour Cerind >

(c) After expanding Sibiu

Dobreta [

Problem /transition graph is revealed incrementally.
The revealing strategy can be visualized as a search tree.

10/29
Notes

Images from [2].



Tree search algorithm

(c) After expanding Sibiu

function TREE_SEARCH(problem) return a solution or failure
initialize by using the initial state of the problem
loop
if no candidates for expansion then return failure
else choose a leaf node for expansion

end if

if the node contains a goal state then return the solution

end if

Expand the node and add the resulting nodes to the tree
end loop

end function

11/29

Notes

A general tree search algorithm. Individual search algorithms vary primarily in how they choose which state to

expand next — the “search strategy”.



Search (algorithm) properties

» Guaranteed to find a solution (if exists)? Complete?

» Guaranteed to find the least cost path? Optimal?

» How many steps - an operation with a node? Time complexity?
» How many nodes to remember? Space/Memory complexity?

How many nodes in a (search) tree? What are tree parameters?

12/29

Notes
Draw a (symbolic—think about a triangle) sketch of a (search) tree. It may grow upwards or downwards. How
would you characterize/parametrize size of a tree.

1 node
e Depth of the tree d.

b nodes
e Max-Depth of the tree m. Can be .

b? nodes

0.

e Branching factor b.
e s denotes the shallowest Goal.
e How many nodes in the whole tree? b* nodes

b™ nodes




Strategies

How to traverse/build a search tree?

1 nod
» Depth of the tree d. node
b nod
» Max-Depth of the tree m. Can nodes
b b? nodes
e o0.
» Branching factor b.
» s denotes the shallowest Goal

» How many nodes in the whole
tree?

b® nodes

b™ nodes

13/29

Notes
It is perhaps worth to remember that the search tree is built as the algorithm goes. Or better said, the tree is a

human friendly representation of the machine run.



Depth-First Search (DFS)

0200,
\
UG eoe 0
OAC) 000 OaE-
®

What are the DFS properties (complete, optimal, time, space)?

14/29

Notes

e In animation, we will do the expansion step at once.

Expanded (explored) nodes become darker gray.

e frontier - set of nodes are light gray.

e When to stop the search?

Thinking about optimality, what is the best solution we seek?



DFS properties

b, m,s, Time complexity?

» Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D oo

©oA e

@ L JOXO),
OlGO,
@

15/29

Notes

e Time, can process the whole tree: b™

Space, only the path so far: bm (a path from root to leaf (m), plus siblings on the path are also on the
frontier (b x m) )

Completness: m may be oo hence, not in general

Optimality: No! It just takes the first solution found.

1 node

b nodes

b? nodes

b® nodes

m b™ nodes



DFS properties

b, m,s, Space complexity?

» Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D oo

©oA e

@ L JOXO),
OlGO,
@

16 /29

Notes

e Time, can process the whole tree: b™

Space, only the path so far: bm (a path from root to leaf (m), plus siblings on the path are also on the
frontier (b x m) )

Completness: m may be oo hence, not in general

Optimality: No! It just takes the first solution found.

1 node

b nodes

b? nodes

b® nodes

m b™ nodes



Breadth-First Search (BFS)

DRORC P

OROR 2
D (@ OO ®

What are the BFS properties?

Notes




BFS properties

b, m,s, Time complexity?

» Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
> Optimal? D O(b%)

s)
) (<) ©

®O OO

18/29

Notes

e Time, can process the whole tree until s: b°, well actually b+ b*> + b + - - - 4 b° but the last layer vastly
dominates. Try some calculations for various b.

Space, all the frontier: b*

Completness: Yes!

Optimality, it does not miss the shallowest solution, hence if all the transition costs are 1: Yes!

1 node

b nodes

b? nodes

b® nodes

m b™ nodes



BFS properties

b, m, s, Space complexity?

» Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
> Optimal? D O(b%)

s)
) (<) ©

®O OO

19/29

Notes

e Time, can process the whole tree until s: b°, well actually b+ b*> + b + - - - 4 b° but the last layer vastly
dominates. Try some calculations for various b.

Space, all the frontier: b*

Completness: Yes!

Optimality, it does not miss the shallowest solution, hence if all the transition costs are 1: Yes!

1 node

b nodes

b? nodes

b® nodes

m b™ nodes



DFS with limited depth, maxdepth=2

Do not follow nodes with depth > maxdepth

20/29
Notes

e Remedy to DFS failing in infinite state spaces.

e Supplying a predetermined max depth — nodes at this depth are treated as if they had no successors.

e However, an additional source of algorithm incompleteness. Solution can obviously be deeper than
maxdepth — unless we know something about the problem. Think about our map of Romania. There are
20 cities. Hence, maxdepth = 19 is a possible choice. Taking a closer look, any city can be reached from
any other city in max. 9 steps (state space diameter), giving a more strict and hence better limit.



lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS
Is it not a terrible waste to forget everything between steps?

21/29

Notes

Really, how much do we repeat/waste? The “upper levels”, close to the root, are repeated many times. However,

in a tree, most nodes are the bottom levels and nr. nodes traversed is what counts. More specifically, for a

solution at depth s, the nodes on the bottm level are generated only once, those on the next-to-bottom level 2x
.. children of the root are generated sx. Compare the number of nodes generated ID-DFS vs. BFS:

N(ID-DFS) = (s)b+ (s — 1)b* + (s = 2)b> + - -- 4 (1)b°

N(BFS) = b+ b+ b>+ -+ b°

Try some calculations for various s and b. For b =10 and d = 5:
N(ID-DFS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

N(BFS) = 10+ 100 + 1000 + 10000 + 100000 = 111110

(Example from [2].)



Cost sensitive search

e
o
@@

@

» In BFS, DFS, node +depth was the node-value.

Notes

22/29




Uniform Cost Search (UCS)
1.5
20 /’\
by @
@ (2 @
CONNNC

When to check the goal (and stop) the search? When visiting or expanding the node?

23/29

Notes
Simple extension of BFS. Instead of expanding shallowest node, the node with smallest path cost so far is
expanded.
Two differences:

e Goal test applied to a node when selected for expansion — not when first generated. (First goal generated
may be on a suboptimal path.)

e Test is added in case a better path is found to a node currently on the frontier.



When to stop, when visiting or expanding?

G
@;&%}1.2??
OO,

24/29

Notes



UCS properties

» Time complexity?
» Space complexity?
» Complete?
» Optimal?

25/29

Notes
Solution cost C*, transition cost at least e. Effective depth, roughly C*/e.

o Time: b¢'/¢
e Space: bC /e
e Completness: Yes!

e Optimality: Yes! Why?
1 node

b nodes

b? nodes

b® nodes

m

b™ nodes



How to organize nodes?

The Python examples are just suggestions, ...
» A dynamically linked structure (1ist()).
» Add a node (list.insert(node)).
» Take a node and remove from the structure (node=list.popQ)).

» Check the Python modules heapq' and queue? for inspiration.

https://docs.python.org/3.5/library/heapq.html

2https: //docs.python.org/3.5/library /queue.html
26/29

Notes

Very likely, you discussed heapq and queue in some programming, algorithms or data structures related courses.



https://docs.python.org/3.5/library/heapq.html
https://docs.python.org/3.5/library/queue.html

What is the solution?

> We stop when Goal is reached.

» How do we construct the path?

27/29
Notes




Summary

> State space graph — an abstraction of a search problem.
» Search tree — visualization of the search algorithm run.

» Properties of search algorithms.

28/29

Notes



References, further reading

Some figures if from [2]. Chapter 2 in [1] provides a compact/dense intro into search
algorithms.

[1] Steven M. LaValle.
Planning Algorithms.
Cambridge, 1st edition, 2006.
Online version available at: http://planning.cs.uiuc.edu.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

29/29
Notes



http://planning.cs.uiuc.edu
http://aima.cs.berkeley.edu/

	Introduction
	Search problem
	State space graphs
	Search Trees
	State Graphs vs. Search Trees

	Search strategies
	DFS
	BFS
	Limited depth
	Search with costs
	When to stop the search?

	References

