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Control Hazards

 Jump and Branch processing and decision Is
significant obstacle for pipelined execution.

* Jump instruction needs only the jump target

address
* Branch instruction depends on two sources:
e Branch Result Taken or Not Taken

* Branch Target Address
Example of RISC-V beq and bne:

e PC+4 If Branch is NOT Taken
e PC+ 2 x immediate If Branch is Taken
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Benchtests of Branch Statistics

* Branches occur every 4-7 instructions on average in integer
programs, commercial and desktop applications;
somewhat less frequently in scientific ones :-)

* Unconditional branches : approx. 20% (of branches)

* Conditional branches approx. 80% (of branches)
* 66% is forward. Most of them (~60%) are often Not Taken.
* 33% is backward. Almost all of them are Taken.

* We can estimate the probability that a branch is taken
Pearen = 0.2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67

In fact, many simulations show that p,,,., is from 60 to 70%.

See: Lizy Kurian John, Lieven Eeckhout:
Performance Evaluation and Benchmarking, CRC Press 2018
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Branch prediction — Motivation
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Branch prediction — Motivation

> Fetch |
PC_' I | Instruction / decode buffer
relatiye |l
Register 1 Decode |
indirect i |
: Dispatch buffer
Register i
indirect with 1 Dispatch |
offset 1l
| v } v ) v - v } v Reservation
Issue \I/ \I/ \I/ \I/ \I/ stations
} Branch | | |
Execute ' ‘
\ Y v v 1
Finish ll | Reorder /
ll Completion buffer
| Corrﬁ)lete |
. . | | Store buffer
AMD Athlon: 10 stages in integer pipeline ﬂ
Intel NetBurst (Pentium 4): 20 stages | Retire |
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Branch prediction

* Two fundamental components:
* branch target speculation (where is next instruction),
e branch condition speculation (if the branch is taken).

* Branch target speculation:

 BTB (Branch Target Buffer) — cache (associative
memory) with two fields: BIA (Branch Instruction
Address) and BTA (Branch Target Adress) —
accessed during the instruction fetch using the
Instruction fetch address (PC)

 When BIA matches with current PC, the corresponding
BTA is accessed and if the branch instruction is
predicted to be taken, BTA is used to modify PC
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One-bit Branch Prediction (usually local)

* A one-bit prediction scheme:
a one “history bit” tells what happened on the last branch
Instruction execution:

* History bit = 1, branch was previously Taken
* History bit = O, branch was previously Not taken

Not taken

taken Not taken
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Branch Prediction for a Loop — One Bit predictor

Execution of Instruction 4

L =0
|
2 —l=1+1
1 0 5 1] 2 11
A 2 11 2 2 | 2 1 | Good
3 3 1 2 3| 2 | 1 |Good
4 1< 2 4 2 11 | Good
5 1< 2 5 2 |1 1 Good
4 l\' 6 1 2 | 6 | 2 1 | Good
7 17 2 71 2 | 1 | Good
Y 8 1T 72 | 8| 2| 1 |Good
5 9 1“7 2 | 9] 2| 1 |Good
10 | 1T 2 [10] 5 | o [NEAM

bit = O branch not taken, bit = 1 branch taken.
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Demonstration in RISC-V RARS Simulator
* RARS (RISC-V Assembler and Runtime Simulator)

https://github.com/TheThirdOne/rars

start: addi a0®, zero, 0O
addi sl1, zero, 3

L1: # for (1 =3; 1 1=0; i--)
addi s2, zero, 5

L2: # for (j =5; j !'=0; j--)
addi s3, zero, 4

L3: # for (k = 4; k '=0; k--)
addi a0, a0, 1
addi s3, s3, -1
bne s3, zero, L3

addi s2, s2, -1
bne s2, zero, L2

addi s1, s1, -1
bne sl1, zero, L1

ebreak
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# cycles = 0

#1 =3

# cycles++
# k- -
# if (k !'= 0) goto L3

# j--
# if (j '= 0) goto L2

# i--
# if (1 !'= 0) goto L1
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Typical Organization of Branch Prediction Table

A

PC (32}3“5) { Hash 1 2N entries

)

A —»{. |} table update

Actual outcome

\ 4
Prediction

Vg

Note: FSM - Finite State Machine (cz: konecny automat
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Branch Prediction

Address of Target History
recent branch  addresses bit(s)
instructions

qu-order PC+4 Next PC
bits used A
as index > ® d ®
0
» 1

Lo redicto
"/ Logic
PC hash -
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Simple Dynamic Local Branch Predictar

T
for (i=0; i<100; i++)
{ if(arrlil==0) { ... } NT| it
NT| Branch
} History
0x400100F8  la x18, arr T Taple
0x400100FC  addi x10, x0, 100
0x40010100  or x1, x0, x0
Loopl: NT
0x40010104  slli  x3, x1,
0x40010108  add ,X18, x3 / T
0x4001010c ] x2, 0(x19)

0x40010210 beq x2, x0;ioep2

Ox40010 beq x0yx0, Loop3

Loop2: T
Loop3: NT
0x40010B08 addi x1,x1, 1

0x40010B bne x1, x10, Loopl NT
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Two-Bit Prediction Buffer Type |

* Smith’s algorithm (2-bit saturating counter)

taken taken

not taken

strongly weakly
not taken not taken

not taken not taken

Branch address

2™ k-bit counters

taken

taken

not taken

Source: wikipedia

Updated value
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incrementation /

> <— )
decrementation
of counter
/|\ A
! |
Prediction (MSB bit)  Actual branch outcome
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Two-Bit Prediction Buffer Type |

* Smith’s algorithm (2-bit saturating counter). This one has
no hysteresis.

Strongly Taken Weakly Taken

Not taken

taken

Not taken

Not taken

Not take

Strongly Not Taken Weakly Not Taken
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Branch Prediction for a Loop — Smith's Predictor
Execution of Instruction 4

=
2 4*

1 | 10 | 2 | 1| 2 111 |Good

3 * 2 | 1112 | 2] 2111 |Good

3 | 117 2 | 3] 2111 |Good

N 4 | 11 2 [ 4] 2111 |Good

4 5 11 2 | 5| 2 {11 | Good

Y 6 11 2 6 | 2 —11 | Good

7 117 2 /7 | 2 11 | Good

. g |0

o | 117 2 [ 9] 211 |Good

l 10 | 11°] 2 |10] 5
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Two-Bit Prediction Buffer Type II.

This 2-bit saturating counter was modified by adding hysteresis.
Prediction must miss twice before it is changed.

Strongly Taken Weakly Taken

Not taken

taken

Not taken

Not taken

Not taken

Weakly Not Taken Strongly Not Taken
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Example of Results of Benchtest

OVERALL PERFORMANCE
ANALYSIS
BALWAYSTAKEN
= ONE BIT
B SATURATING COUNTER

SATURATING . NN 53175 Here, a higher number
ONEBIT | 68.75 means the better
ALWAYSTAKEN I 59 25 prediction

Source: https://ieeexplore.ieee.org/document/6918861

H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for
RISC Architecture," 2013 International Conference on Machine Intelligence and
Research Advancement, Katra, 2013, pp. 397-401.

Note: This study has used saturating counter with hysteresis (type Il).
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Branch Condition Prediction — Global Predictor

* Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

PHT (Pattern History Table)

000000
Branch Address 000001
PC =0101001110111101 000010
I
010110 > 010110
A
BHR (Branch
History Register) 111101
o110 111110
111111 Prediction (MSB bit)

—
4

What is the optimal number of bits for BHR a for BA?
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Branch Condition Prediction — Global Predictor

* Global-History Two-Level Branch Predictor with a 4-bit
Branch History Register

 Why use global history for PHT indexation?

a=0;

if(condition #1) a=3;
if(condition #2) b=10;
if(a <= 0) F();

 The behavior of a branch may be connected (or correlated) with a
different branches conditions evaluation in the past.

* In our example, execution of function F() depends on the
condition #1. The condition #2 is irrelevant. Predictor must be able to
learn this behavior (distinguish these branch conditions).
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Correlating Predictors with Local Predictors

We can look at other branches for clues

If (x==2) // branch bl
If (y==2) // branch b2
if(x!'=y) {...} // branch b3 depends on the

results of bl and b2

B35APO Computer Architectures
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(2,1) Correlated predictor

We use 4 predictors: P00 | P01 | P10 | P11

] T

P00 P01 P10
This predictor is This predictor is This predictor is
used if the used if the used if the
previous 2 previous 2 previous 2
branches in the branches have branches have
program history: 2" |ast history: 2" |ast
have both status branch Not taken, branch Taken,
Not taken. and the last and the last
branch Taken branch Not taken.

A (2,1) correlated branch predictor

* (2,1) means 2%2=4 predictors buffers each contains 1 bit

* and uses the behavior of the last 2 branches to choose
from 22 predictors.
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P11

This predictor is
used if the
previous 2
branches in the
program

have both status
Taken.
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Correlating Predictors

> Example (2,1) predictor

Hash of branch address

1-bits per branch predictor

—> [ I EEE— 1 Prediction

|

| | |
2-bit global branch history
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2 bits of global history
means that we look at
T/NT behavior of last 2
branches to determine the
behavior of THIS branch.

The buffer can be
Implemented as an one
dimensional array.

(m,n) predictor uses
behavior of last m
branches to choose from
2™ predictor each of them
IS n-bit predictor.
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Correlating Predictors in SPEC89

1% — .
nasa? | 0% P il Note: SPEC89 is older SPEC CPU
1% per entry . .
[ o m Unlimied enties: benchmark suite that is nowadays
malix300 | 0% 2 bits per entry replaced by newer sets. It contained:
R - 223;‘9”“'931 e gccINT1IGNUC compile_r_
tomeaty |y 0% * espresso INT PLA optimizing tool

* spice2g6 FP2 Circuit simulation and
analysis

* doduc FP Monte Carlo simulation

* nasa7 FP Seven floating-point kernels

* 1i INT LISP interpreter

* eqntott INT Conversions of equations
to truth table

* matrix300 FP Matrix solutions

doduc

spice
SPEC89
benchmarks

foppp

gce )
* fpppp FP Quantum chemistry
application
espresso .
* tomcatv FP Mesh generation
18% application
eqntott 18%
| 10% Source of picture: J. L. Hennessy and D. A. Patterson,
[ - 10% Computer Architecture: A Quantitative Approach.

0% 2% 4% 6% 8% 10% 12% 14%

16% 18%




Tournament Predictors

* Motivation for correlating branch predictors is
2-bit predictor failed on important branches; by adding
global information, performance was improved.

* Tournament predictors: use 2 predictors, 1 based on
global information and 1 based on local information
(local branch was taken, not taken), and combine them
with a selector.

* They use n-bit saturating counter to choose between
predictors.

* Hopes to select right predictor for right branch.
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Benchtest of Accuracy — Test for Tournament Predictor

Conditional branch misprediction rate

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Total predictor size KBytes
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A Small Example How to Avoid Branches

On web, you can found out many tricks suitable for time critical loops. This example
present how to calculate absolute value of 32 bit signed integer x without branches.

Code with unpredictable branch dependable on data

C code ASM, X in s2 Comment
If(x<0) x=-X; slt s1, s2, zero [l tmp=x<0?1:0
beq s1, zero, Skipl // if(tmp==0) goto Skip
sub s2, zero, s2 Il X =-X;
Skipl:
Fast C code ASM, x in s2 Comment
int tmp = x>>31; sraisl, s2, 31 Il tmp=x<0?-1:0
X A= tmp; Xor s2, s2, sl /I 15t compliment of x, if tmp=-1
X -=tmp; sub s2, s2, sl /[ add 1liftmp=1

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for
an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.
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What are

Dynamic multiple-issue
processors

aka Superscalar
processors ?



Definition of Superscalar Processor

Wikipedia:

* |In contrast to a scalar processor that can
execute at most one single instruction
per clock cycle, a superscalar processor
can execute more than one instruction
during a clock cycle by simultaneously
dispatching multiple instructions to different
execution units on the processor.

?
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A Pipeline That Supports Multiple Outstanding FP Operations

Integer unit

EX

FP/integer multiply
M2 M3 M4 M5 M6 M7

MEM WB
FP adder

FP/integer divider

Source of picture: J. L. Hennessy and D. A. Patterson,
Computer Architecture: A Quantitative Approach.
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Pentium 4 - Out-of-order Execution pipeline

Reglster Ragister
|-Fetch Queus Raname Queus Sched Raxd Exacutea L1 Cache Write Ratire

Sion
Buifisr

Heglstaf -
HEnam

IR ENE:

[ Source: Intel ]
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Hyper-Threading

Arch State Arch State || Arch State
Processor Execution Processor Execution
Resources Resources

4—'—?4—L>

Processor with out Hyper- Processor with Hyper-
Threading Technology Threading Technology

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002
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Pentium 4: Netburst Microarchitecture’s execution pipeline

|-Fetch

Trace
Cache

Fetch
Queue

Rename

Uop
Queue

W—r

e

Sched

Bl

p

Register
Read

m,

Registers

Execute

)
)

)

D-Cache

Store
Buffer

L1 D-Cache

Register
Write

Registers

Picture is simplified because the pipeline has actually 20 steps.
The branch miss prediction penalty is here extremely high.
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Retire
Queue

ROB
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Sample from: Hyper-Threading Benchtest

Cinebench 11.5

SRR multi-threaded

Q tom's

Core i7-580X 3.33 GH= HT on (Turbo 3.48/3.6 GH=)

Core i7-980X 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

Core i7-875 3.33 GHz HT on (Turbo 3.46/3.6 GHz)

Core i7-975 3.33 GHz HT off (Turbo 3.45/3.6 GHz)

3 & 9
pts

[

Adobe Photoshop CS5 4

Image Processing
Apphying & filters to a 69 MB TIF image

Q tom's

hardware

Core i7-980X 3.33 GHz HT off (Turbo 3.48/3.6 GHz)

Core i7-980X 3.33 GHz HT on (Turbo 3.46/3.6 GHz) [

Core i7-875 3.33 GHz HT on (Turbo 3.46/3.6 GHz)
Core i7-975 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

00:00 00:20 00:40 01:00 01:20 01:40
Time [mm;ss]
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SiSoftware Sandra 2010 Pro

ALU Performance
Dhrystone GIPS

% hardware

Q tom's

Core i7-580X 3.33 GHz HT on (Turko 3.458/3.6 GHz)
Core i7-380X 3.33 GHz HT off (Turbo 3.48/3.6 GHZ)
Core i7-975 3.33 GHz HT off (Turbo 3.458/3.8 GHz)
Core i7-975 3.33 GHz HT on (Turbo 3.46/3.6 GHz)

=
L
=

&0 a0 120 150
Score

No influence on integer arithmetic
performance or memory bandwidth!
Why?

SiSoftware Sandra 2010 Pro
Memory Bandwidth

Q tom's

hardware

Core i7-975 3.33 GHz HT off (Turbo 3.48/3.8 GHz)
Core i7-575 3.33 GHz HT on (Turbo 3.45/3.6 GHz)
Core i7-980X 3.33 GHz HT off (Turbo 3.468/3.6 GHz)
Core i7-920X 3.33 GHz HT on (Turbo 3.48/3.6 GHz)
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AMD Bulldozer 15h (FX, Opteron) - 2011

L1 instruction cache
GAkE two-way

Instruction
Fetch

Instruction decoder

| Pradecode/Pick l

Branch
Prediction

Module block
{incl. 2 cores)

Mic

Decode

Fast
Path

o

Micro
Decode

Micro

Decode

Micro
Decode

Fast
Path

Format | Format
Decode | Decode

Format | Format
Decode | Decode

Format
Decode

Format
Decode

Format | Format
Decode | Decode

Integer Cluster 1

Dispatch l:

| Resource
| Monitor

Dispatch
Controller

Scheduler H

Int
Regs

FPU

Integer Cluster 2

Shared FP “
Scheduler

Shared FP
Reqg File

Thraad
Retirement

L1 data cache
16kE four-way

Resource
Monitor

Resource

Write Coalescing Cache

Maonitor
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1 T3

L1 data cache
16 kB four-way

Core Intarface Unit

L2 Data Cache
2048kB (shared,Max)

http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block _diagram_(CPU_core_bloack).PNG

35



Intel Nehalem (Core i7) - 2008

Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte,

128-entry TLB-4K, 7 TLB-2/4M per thread
5 Uncore
T 128 |
Branch Quick Path >
Prefetch Buffer (16 B
* uffer (16 Bytes) Prediction Inter-
1 globalbimodal, connect | ¢
Predecode & loop, indirect >
Instruction Length Decoder jmp 4x 20 Bit
llll’l; | 6.4 GT/s
Instruction Queue
18 x86 Instructions R >
Alignment, MacroOp Fusion R -
Controller [~ -
! 3 2 2 3x 64 Bit
Complex Simple Simple Simple 133GT/s
Decoder Decoder Decoder| Decoder
Loop S 1 I Y
Stream —|Decaded Instruction Queue (28 HOP entries) |¢ Micro Common
Decoder J, l l 1. Instruction Lgﬁ;che
MicroOp Fusion | Sequencer ye
2x 4 1 1 1 T
R;‘"e_“;'e"‘ 2 x Register Allocation Table (RAT) 1
egister |—
é]“e — if:nrder Bu'lvffer (128—81“’5{) fusedl
| Reservation Station (128-entry) fused | 256 KByte
: 8-way,
) 64 Byte
Cacheline,
private
L2-Cache
512-entry
ResultB
esult Bus 256 L2-TLB-4K
octuple associative Data Cache 32 KByte,
¢ :
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AMD Zen 2 - Microarchitecture

* 7 nm process (from 12 nm), I/O die utilizes 12 nm

* Core (8 cores on CPU chiplet), 6/8/4 uOPs in parallel
* Frontend, pOP cache (4096 entries)

* FPU, 256-bit Eus (256-bit FMAs) and LSU (2x256-bit L/S), 3
cycles DP vector mult latency

* Integer, 180 registers, 3x AGU, scheduler (4x16 ALU + 1x28
AGU)

* Reorder Buffer 224 entries
* Memory subsystem
* L1i-cache and d-cache, 32 KiB each, 8-way associative
* L2512 KiB per core, 8-way,
* L2 DTLB 2048-entry
* 48 entry store queue
* CCX
* L3, slices, 2x 16 MiB
* L3 latency (~40 cycles)
* In-silicon Spectre enhancements
* 1/O, PCle 4.0, Infinity Fabric 2, 25 GT/s
Author: QuietRub
Source: https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

Frony g

EX

LS Toftom L2
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AMD Zen 2 - Microarchitecture

32 K I-Cache
8-way

| |

Op Cache

I » I

. . > HOp Queue
4 instructions/cycle

Branch Prediction

6 pOps dispatched

INTEGER FLOATING POINT

Integer Rename Floating Point Rename

¥ ¥ ¥ ¥ ¥ ¥ ¥ 3 ¥

Scheduler  Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler  Scheduler Scheduler

Integer Physical Register File FP Register File

y¥ ¥ ¥ ¥ ¥ ¥ 3 L 2 A A

ALU ALU ALU ALU AGU AGU AGU MuL ADD MUL  ADD

512KL2 (1+D)
Cache
8-way

Load/Store 32K D-Cache

2 loads +1 store per cycle
Queues 8-way
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