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GSOC 2016 Mentor Summit, GSoC 2023 is Your Turn

https://summerofcode.withgoogle.com/

Students Apply March 20 – April 4, 2022, deadline 20:00 (CEST) 
Register and submit your applications to mentor organizations.

https://summerofcode.withgoogle.com/
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QtMips and QtRVSim – Origin and Development
● MipsIt used in past for Computer Architecture course at the Czech Technical 

University in Prague, Faculty of Electrical Engineering
● Diploma theses of Karel Kočí mentored by Pavel Píša

Graphical CPU Simulator with Cache Visualization
https://dspace.cvut.cz/bitstream/handle/10467/76764/F3-DP-2018-Koci-Karel-diploma.pdf

● Switch to QtMips in the 2019 summer semester
● Fixes, extension and partial internals redesign by Pavel Píša
● Switch to RISC-V architecture in 2022. Main work by Jakub Dupák 2021

Graphical RISC-V Architecture Simulator - Memory Model and Project 
Management

● https://dspace.cvut.cz/bitstream/handle/10467/94446/F3-BP-2021-Dupak-Jakub-thesis.pdf

● Alternatives:
● RARS: IDE with detailed help and hints

https://github.com/TheThirdOne/rars
● EduMIPS64: 1x fixed and 3x FP pipelines

https://www.edumips.org/

https://dspace.cvut.cz/bitstream/handle/10467/76764/F3-DP-2018-Koci-Karel-diploma.pdf
https://dspace.cvut.cz/bitstream/handle/10467/94446/F3-BP-2021-Dupak-Jakub-thesis.pdf
https://github.com/TheThirdOne/rars
https://www.edumips.org/
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QtRVSim – Download

● Windows, Linux, Mac

https://github.com/cvut/qtrvsim/releases
● Ubuntu

https://launchpad.net/~qtrvsimteam/+archive/ubuntu/ppa
● Suse, Fedora and Debian

https://software.opensuse.org/download.html?project=home%3Ajdupak&package=qtrvsim

● Online version

https://comparch.edu.cvut.cz/qtrvsim/app
● RISC-V International talk for Academic and Training SIG

https://youtu.be/J6AcPZZ_ISg
● FOSDEM 2023 QtRvSim talk – Record of Interactive Session

https://fosdem.org/2023/schedule/event/rv_qtrvsim/

https://github.com/cvut/qtrvsim/releases
https://launchpad.net/~qtrvsimteam/+archive/ubuntu/ppa
https://software.opensuse.org/download.html?project=home%3Ajdupak&package=qtrvsim
https://comparch.edu.cvut.cz/qtrvsim/app
https://youtu.be/J6AcPZZ_ISg
https://fosdem.org/2023/schedule/event/rv_qtrvsim/
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John von Neumann Computer Block Diagram

28. 12. 1903 - 
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

● 5 functional units – control unit, arithmetic logic unit, memory, input (devices), 
output (devices)

● An computer architecture should be independent of solved problems. It has to 
provide mechanism to load program into memory. The program controls what the 
computer does with data, which problem it solves.

● Programs and results/data are stored in the same memory. That memory consists 
of a cells of same size and these cells are sequentially numbered (address).

● The instruction which should be executed next, is stored in the cell exactly after 
the cell where preceding instruction is stored (exceptions branching etc. ). 

● The instruction set consists of arithmetics, logic, data movement, jump/branch and 
special/control instructions.
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Computer based on von Neumann's concept

● Control unit
● ALU 
● Memory
● Input
● Output

Processor/microprocessor

Input/output subsystem

von Neumann architecture uses common 
memory, whereas Harvard architecture uses 
separate program and data memories

The control unit is responsible for control of the operation 
processing and sequencing. It consists of:
● registers – they hold intermediate and programmer visible state
● control logic circuits which represents core of the control unit (CU)
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The most important registers of the control unit

● PC (Program Counter)

holds address of a recent or next instruction to be processed
● IR (Instruction Register)

holds the machine instruction read from memory
● Another usually present registers

● General purpose registers (GPRs)
may be divided to address and data or (partially) 
specialized registers

● SP (Stack Pointer) – points to the top of the stack; (The stack 
is usually used to store local variables and subroutine return 
addresses)

● PSW (Program Status Word)
● IM (Interrupt Mask)
● Optional Floating point (FPRs) and vector/multimedia regs.
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The main instruction cycle of the CPU

1. Initial setup/reset – set initial PC value, PSW, etc.

2. Read the instruction from the memory
● PC → to the address bus
● Read the memory contents (machine instruction) and 

transfer it to the IR
● PC+l → PC, where l is length of the instruction

3. Decode operation code (opcode)

4. Execute the operation
● compute effective address, select registers, read 

operands, pass them  through ALU and store result

5. Check for exceptions/interrupts (and service them)

6. Repeat from the step 2
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Compilation: C  Assembler  Machine Code

/* ffs as log2(x)*/
int x = 157;
int y = 0;
 
while(x != 0)
{
  x = x / 2;
  y = y + 1;
}

_start:addi a0, zero, 157 // int x = 157;

addi t1, zero, -1 // int y = 0;

beq a0, zero, done // while(x != 0) {

loop: srli a0, a0, 1 //   x = x / 2;

addi t1, t1, 1 //   y = y + 1;

bne a0, zero, loop //}

done: addi a0, t1, 0

finish: ebreak

        beq zero, zero, finish
0x00000200 09d00513 addi x10, x0, 157
0x00000204 fff00313 addi x6, x0, -1
0x00000208 00050863 beq x10, x0, 0x218
0x0000020c 00155513 srli x10, x10, 0x1
0x00000210 00130313 addi x6, x6, 1
0x00000214 fe051ce3 bne x10, x0, 0x20c
0x00000218 00030513 addi x10, x6, 0
0x0000021c 00100073 ebreak

https://gitlab.fel.cvut.cz
/b35apo/stud-support/

seminaries/qtrvsim/ffs-
as-log2

https://gitlab.fel.cvut.cz/b35apo/stud-support/
https://gitlab.fel.cvut.cz/b35apo/stud-support/
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/blob/master/seminaries/qtrvsim/ffs-as-log2/ffs-as-log2.S
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/blob/master/seminaries/qtrvsim/ffs-as-log2/ffs-as-log2.S
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Instruction Encoding Constrains

Instruction

bits

8

16

32

● Encode 256 combinations in 8-bits
● Opcode and address to directly operate on 

megabytes of ram does not fit
● Use some limited number of fast accessible 

registers or use stack concept
● 8 registers, 3 bits to encode, for two operand 

operations (a += b, mem[a] = b), 6 bits to select 
registers→only 4 operations in total

● 16 bit (65536), 16 registers, 256 two operands or 
16 three operands (4 + 3 * 4 bits)

● 32 bit, 32 registers, three operands (17 + 3 * 5)
● But immediate for arithmetic and address usually 

required (CISC followup words, RISC uses 
limited ranges and some other mechanism) 

reserve 
part of 
code 
space for 
longer 
operations
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RISC-V – Instruction Length Encoding

xxxxxxxxxxxxxxaa 16-bit (aa ≠ 11)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (bbb ≠ 111)

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

· · ·xxxx xxxxxxxxxxxxxxxx xnnnxxxxx1111111 (80+16*nnn)-bit, nnn ≠ 111

· · ·xxxx xxxxxxxxxxxxxxxx x111xxxxx1111111 Reserved for ≥192-bits
         Address:

base+4 base+2 base
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RISC-V Processor Registers

Register ABI Name Description Saver

x0 zero Hard-wired zero

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer –

x4 tp Thread pointer –

x5 t0 Temporary/alternate link register Caller

x6–7 t1– 2 Temporaries Caller

x8 s0/fp Saved register/frame pointer Callee

x9 s1 Saved register Callee

x10–11 a0–1 Function arguments/return values Caller

x12–17 a2–7 Function arguments Caller

x18–27 s2–11 Saved registers Callee

x28–31 t3–6 Temporaries Caller

pc pc Program Counter

f0–31 Floating point

Machine control and status
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Hardware realization of basic (main) CPU cycle

Program counter, 32 b

Instruction 
memory

instruction, 32 bits

constant 4

Instruction address

Next instruction address
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The goal of this lecture

● To understand the implementation of a simple computer consisting 
of CPU and separated instruction and data memory

● Our goal is to implement following instructions:
● Read and write a value from/to the data memory
lw – load word,  sw – store word

● Arithmetic and logic instructions: add, sub, and, or, slt

Immediate variants: addi,ori, upper bits loads olui,auipc
● Program flow change/jump instruction beq
● Subroutine call jal, jalr (provides even return from subroutine jr ra)

● CPU will consist of control unit and ALU (data path).
● Notes:

● The implementation will be minimal (single cycle CPU – all operations 
processed in the single step/clock period)

● The lecture 5 focuses on more realistic pipelined CPU implementation
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Subset of RISC-V Instructions to Implement

Instruction Executed operation

lw rd, imm12(rs1) [rd] ← Mem[[rs1] + imm12];

sw rs2, imm12(rs1) Mem[[rs1] + imm12] ← [rs2];

addi rd, rs1, imm12 [rd] ← [rs1] + imm12;

add rd, rs1, rs2 [rd] ← [rs1] + [rs2];

sub rd, rs1, rs2 [rd] ← [rs1] – [rs2];

and rd, rs1, rs2 [rd] ← [rs1] & [rs2];

or rd, rs1, rs2 [rd] ← [rs1] | [rs2];

slt rd, rs1, rs2 [rd] ← [rs1] < [rs2];

beq rs1, rs2, imm12 if [rs1] == [rs2] go to [PC]+(imm12<<1); else go to [PC]+4;

jal rd, imm20 [rd] ← [PC]+4; go to [PC]+(imm20<<1);

jalr rd, rs1, imm12 [rd] ← [PC]+4; go to [rs1]+imm12;

lui rd, imm20 [rd] ← imm20<<12

auipc rd, imm20 [rd] ← PC+(imm20<<12)

Remark, all immediate operands are signed
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The MIPS instruction format and instruction types

● The three types of the instructions are considered:

● the R type instructions → opcode=000000, funct – operation 
● rs – source, rd – destination, rt – source/destination
● shamt – for shift operations, immediate – direct operand

● 5 bits allows to encode 32 GPRs ($0 is hardwired to 
0/discard)

Type 31…                      0

R opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 rd(5), 15:11 shamt(5) funct(6), 5:0

I opcode(6), 31:26 rs(5), 25:21 rt(5), 20:16 immediate (16), 15:0

J opcode(6), 31:26 address(26), 25:0
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The RISC-V instruction format and instruction types

● The six basic formats of the instructions are considered:
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1]imm[11]opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

● opcode – specify operation, func 3 and func 7 variant
● rs1 – source 1, rs2 – source 2, rd – destination
● 5 bits allows to encode 32 GPRs ($0 is hardwired to 

0/discard)
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RISC-V Immediate Operand Encoding

31 0
— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

145101112192030

● goal: keep same position in the instruction for 
corresponding bit (compare U and J, B and S, S and I)

● sign in instruction bit 31 (needs fan-out to drive multiple 
bits)

● There are five options how to form immediate operand
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Opcode encoding

Opcode The group, operation Actual operations for our subset

0110011 R-type (see funct7 and funct3) add, sub, slt, or, and

0010011 ALU-imm (see funct3) addi

0000011 Memory load (funct3 = 010) lw

0100011 Memory store (funct3) sw

1100011 Branch (see funct3) beq

1101111 jal jal

1100111 jalr jalr

0000111 lui lui

The primary selection of operation is opcode

func7 fun3 instruction/ALU operation

0000000 000 add

0100000 000 sub

0000000 010 slt

0000000 110 or

0000000 111 and
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CPU building blocks

Instr. 
Memory
(ROM)

A    RD
32 32PC’ PC

32 32

CLK
5

Reg.
  File

A1

A2
A3

WE3
RD1

RD2

WD3

5
5

32

32

CLK

32

Data 
Memory

A     RD

WD

WE
32

32

32

CLK

Write at the rising edge of CLK when WE = 1

Read after “enough time” for data propagation
Multiplexer
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The load word instruction

Description A word is loaded into a register from the specified address 

Operation: [rd] ← Mem[[rs1] + imm12]; 

Syntax: lw rd, imm12(rs1) 

Encoding: iiii iiii iiii ssss s010 dddd d000 0011 

lw – load word  –  load word from data memory into a register

Example: Read word from memory address 0x400 into register number 2:
lw x2, 0x400(x0)

iiii iiii iiii ssss s010 dddd d000 0011
0100 0000 0000 0000 0010 0001 0000 0011

0 20x400

0x 40 00 21 03   – machine code for instruction  lw x2, 0x400(x0)
Note: Register x0 is hardwired to the zero

opcode = 3func3
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Single cycle CPU – implementation of the load instruction

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3

11:7

Imm 
decode

ALU

ALUControl

lw: rs1 – base address, imm12 – offset, rd – register where to store fetched data

SignImm

I imm(12), 31:20 rs1(5), 19:15 func3, 14:12 rd(5), 11:7 opcode(7), 6:0
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Single cycle CPU – implementation of the load instruction

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3

11:7

ALU

Write at the rising edge of the clock

ALUControl
RegWrite = 1 

Imm 
decode

I imm(12), 31:20 rs1(5), 19:15 func3, 14:12 rd(5), 11:7 opcode(7), 6:0

lw: rs1 – base address, imm12 – offset, rd – register where to store fetched data
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Single cycle CPU – implementation of the load instruction

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3

11:7

ALU

ALUControl
RegWrite = 1 

4

PCPlus4

+

lw: rs1 – base address, imm12 – offset, rd – register where to store fetched data

Imm 
decode

I imm(12), 31:20 rs1(5), 19:15 func3, 14:12 rd(5), 11:7 opcode(7), 6:0
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QtMips – MIPS Architecture Emulator

CPU core view
● single cycle
● pipelined

Registers

Code

Peripherals

Cache

Terminal

Data memory

Terminal

Editor

Assembler

Exceptions
control

MakeSingle StepRunLoad
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The store word instruction

Description Stores a value in register rs2 to given address in memory. 

Operation: Mem[[rs1] + imm12] = [rs2]

Syntax: sw rs2,imm12(rs1)

Encoding: iiii iiit tttt ssss s010 iiii i000 0011 

sw – store word  –  store word in a register to data memory

Example: Store word in register 2 to memory address computed as addition 
of value in register 5 and constant 0x404, bit symbol t used for rs2:
sw x2, 0x404(x5)

iiii iiit tttt ssss s010 iiii i010 0011
0100 0000 0010 0010 1010 0010 0010 0011

0x 40 22 a2 23 – machine code for instruction  sw x2, 0x404(x5)

520x40_ func3 opcode = 350x_04
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Single cycle CPU – implementation of the store instruction

PC’ PC Instr 19:15

31:25, 24:20
11:7

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3

11:7

ALU

sw: rs1 – base address, imm12 – offset, rs2 – select register to store into memory

ALUControl
RegWrite = 0 

4

PCPlus4

+

MemWrite = 1 

24:20

S imm(12), 31:25, 11:7 rs2(5), 24:20 rs1(5), 19:15 func3, 14:12 opcode(7), 6:0

Imm 
decode

WriteData



28B35APO   Computer Architectures

Instruction for two registers addition

Description
Add together values in two registers (rs1 + rs2) and stores 
the result in register rd. 

Operation: [rd] = [rs1] + [rs2]

Syntax: add rd, rs1, rs2

Encoding: 0000 000t tttt ssss s010 dddd d000 0011 

add – addition  –  add content of two registers and store it to destination one

Example: Add values in registers 1 and 2 and store result into register 3:
add x4, x2, x3

0000 000t tttt ssss s000 dddd d011 0011
0000 0000 0011 0001 0000 0010 0011 0011

3 2 4

0x 00 31 02 33  – machine code for instruction  add x4, x2, x3
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Single cycle CPU – implementation of the add instruction 

PC’ PC Instr 19:15 SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3
ALU

add: type R, rs, rt – source, rd – destination, funct – select ALU operation = add

ALUControl
RegWrite = 1 

4

PCPlus4

+

24:20

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData

0
1

R func(7),31:25 rs2(5),24:20 rs1(5),19:15 func3, 14:12 rd(5),11:7 opcode(7), 6:0

Imm 
decode

31:25, 24:20
11:7

11:7
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Single cycle CPU – sub, and, or, slt

Only difference is another ALU operation selection (ALUcontrol). The data path is 
the same as for add instruction

PC’ PC Instr 19:15 SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 1 

4

PCPlus4

+

24:20

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData

0
1

Imm 
decode

11:7

31:25, 24:20
11:7
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Single cycle CPU – addi, ori, andi

PC’ PC Instr
SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 1 

4

PCPlus4

+

ALUSrc = 1

Result0
1

MemToReg = 0

WriteData

0
1

addi – add immediate; [rd] = [rs1] + imm12

addi rd, rs, imm12

ori, andi  instructions do not sign 
extend the immediate operand

I imm(12), 31:20 rs1(5), 15:19 func3, 14:12 rd(5), 7:11 opcode(7), 6:0

Imm 
decode

19:15

24:20

11:7

31:25, 24:20
11:7
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Single cycle CPU – implementation of beq

PC’ PC Instr
SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3
ALU

beq – branch if equal; imm–offset; PC´ = PC + SignImm

ALUControl
RegWrite = 0 

ALUSrc = 0

Result0
1

MemToReg = x

WriteData

Branch = 1

0
1

0
1

S imm(12), 31:25, 11:7 rs2(5), 24:20 rs1(5), 19:15 func3, 14:12 opcode(7), 6:0

Imm 
decode

31:25, 24:20
11:7

19:15

24:20

11:7

+ PCBranch

+
4

PCPlus4
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Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK 

● What is the maximal possible frequency of the CPU?
● It is given by latency on the critical path – it is lw instruction in our case: 

T
c
 = t

PC
 + t

Mem
 + t

RFread
 + t

ALU
 + t

Mem
 + t

Mux
 + t

RFsetup

+
4

PC
PCBranchPCPlus4

PC’ Result

SrcB

31:25, 24:20
11:7

19:15PC Instr

24:20

11:7

SrcA Zero

AluOut

WriteData
WriteReg

ReadDataInstr. 
Memory

A   RD

Data 
Memory

A     RD

WD

WE

Reg.
  File

A1    RD1

A2    RD2
A3
WD3

WE3

0
1

0
1

0
1

Imm
decode

ALU

+

SignImm
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Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK 

● What is the maximal possible frequency of the CPU?
● It is given by latency on the critical path – it is lw instruction in 

our case: 
T

c
 = t

PC
 + t

Mem
 + t

RFread
 + t

ALU
 + t

Mem
 + t

Mux
 + t

RFsetup

Consider following parameters:
● t

PC
= 30 ns

● t
Mem

= 300 ns
● t

RFread
= 150 ns

● t
ALU

= 200 ns
● t

Mux
= 20 ns

● t
RFsetup

= 20 ns

Then T
c
 = 1020 ns  → f

CLK 
max = 980 kHz, 

IPS = 980e3 = 980 000 instructions per second
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Notes

● Remember the result, so you can compare it with result 
for pipelined CPU during lecture 4

● You should compare this with actual 30e9 IPS per core, 
i.e. total 128 300 MIPS for today high-end CPUs

● How many clever enhancements in hardware and 
programming/compilers are required for such advance!!!

● After this course you should see behind the first two hills 
on that road.

● We will continue with control unit implementation and its 
function
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Control Unit Signals Generation

Instrukce Opcode Funct3 Funct7 AL
US

rc
AL

UC
on

tro
l

M
em

W
rit

e
M

em
To

Re
g

Re
gW

rit
e

Br
an

ch
Be

q
Br

an
ch

Ja
l

Br
an

ch
Ja

lr

lw 0000011 010 don’t care
sw 0100011 010 don’t care
add 0110011 000 0000000
sub 0110011 000 0100000
slt 0110011 010 0000000 The values of control

signals according to
previous slides

or 0110011 110 0000000
and 0110011 111 0000000
andi 0010011 000 don’t care
beq 1100011 000 don’t care
jal 1101111 don’t care don’t care
jalr 1100111 000 don’t care

The control unit for single cycle RISC-V architecture can be simple combinatorial 
table.
For our simple case, only sequential blocks are PC, registers and data memory 
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The Control Unit of the Single Cycle CPU
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The control unit (CU)

● The control unit is typically a sequential circuit
● It generates the control signals at appropriate time (CU 

outputs)
– storage select, write enable (WE) and clock gating
– data route – multiplexers control
– function select – ALU operation/activation

● It reacts to the status signals (CU inputs)
– it only selects how to react on Zero in our case
–  many more things, 
– many more conditions can influence instruction 

cycle in case of real CPU – interrupts, exceptions 
etc.
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Control unit – more detailed/generic

The task of CU is to control other units. It coordinates their 
activities and data exchanges between them. It controls fetching of 
the instructions from the (main/instruction) memory. It ensures their 
decoding and it sets gates, control and data paths to such state 
that instruction (can be) is executed.

Generally, the task of CU is to generate sequences of control 
signals for computer subsystems in such order that prescribed 
operations (arithmetic, program flow change, data exchange, 
control etc.) are executed.

Each step of this sequence can be considered or implemented as 
micro-operation. The micro-operation is elementary operation 
which reads and can change single or multiple registers 
(programmer visible or hidden in micro-architecture of CPU).

Usual effect of the micro-operation is change of the content of 
some register (in our case R0 to R31 or PC) or memory or both.
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Some illustrative examples of micro-operation sequence

● R(MAR)  R(CIAC)  

Move the content of Current Instruction Address Counter 
to the Memory Address Register

● R(CIAC)  R(CIAC)+1

Increment CIAC register

● M(MBR)  M(MAR) 

read the value from the memory

● IF F(S) THEN R(A)  R(MDR)
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Possible hardware realizations of the control unit

● Hardwired control unit – implemented by sequential 
circuit – next-state function/sequencer
● one flip-flop per state chain (like ring counter)
● with explicit counter
● finite state machine (FSM – Mealy, Moore)
● other implementation

● Microprogram control unit
● horizontal microcode
● vertical microcode
● diagonal
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One flip-flop per state control unit

The function of CU can be prescribed by FSM. It can be straightforwardly 
implemented in VERILOG/VHDL (for the case that one instruction is executed in 
more cycles and there is no/minimal activities overlap).
Note: The names of signals and states shown in this example do not correspond 
to the previously discussed MIPS CPU model!

Control signals

finite state 
machine flip-flop control 

chain

Status signals



43B35APO   Computer Architectures

Finite state machine – Example
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Finite state machine of CU – example

General model of logic 
sequential circuit (Huffman)

Control unit

Combinatio
nal logic

Memory – 
flip-flops

I
O

St+1=f(St, It)

S

Ot+1=g(St, It)
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Finite state machine – Example

Combinational logic block show on 
previous slide can be implemented by:

● Directly as combinational logic build 
from separate logic gates

● With use of ROM memory

(inputs are connected to ROM 
address inputs)

● With use of FPGA/PLA 
(programmable logic array)
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Explicit counter based control unit

46

Status signals

Note: again for concept illustration only

control
reaction
to status

counter

decoder

Control signals
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Microprogrammed control unit

OR – Operation code register 
CMIAR - Current Microinstruction Address Register
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Horizontal microprogrammed control unit

control signals

status
signals

Microcode memory
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Signals and next state encoding in microinstruction
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Wrap up structure of microprogrammed control unit

● Microprogrammed control unit is a computer in computer
● RaµI is equivalent to PC,
● Microcode memory is equivalent to program memory
● µOP is equivalent to IR
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Microprogrammed versus hardwired control unit

● Hardwired CU is faster and modifications for pipelined 
execution are possible (multiple execution stages activated in 
parallel)

● Price/gate count considerations
● Hardwired is cheaper if simple (optimized instructions encoding)
● Microprogrammed is cheaper when complex 

instructions/operations have to be processed
● Flexibility – microprogrammed CU can be modified more 

easily
● Microcode memory

● ROM – fixed
● RWM – instruction set can be changed/extended/fixed at CPU 

startup/configuration phase (i.e. used to patch bugs)
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Conclusion for microprogrammed control units

● Microprogram is yet another layer between externally visible 
machine instructions and execution units.

● The concept of translating or interpreting (externally visible) 
instructions by control unit is common in CPUs, GPUs, disc 
and network controllers.

● The software/micro-program based implementation allows 
to realize more complex machine instructions without 
significant HW complexity increase.

● This microprogramming allows to define final function(s). 
Microcode is stored in (ROM, PLA, flash) inside CU.

● However, the sequential execution of microinstructions by 
CU leads to the low IPS rate, so more sophisticated 
solutions are used or microcode is left only for legacy part 
of instruction set support.
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RISC versus CISC CPU

● RISC (Reduced Instruction Set Computers)
● The CPU architectures where machine instructions 

encoding is optimized for simple decoding and fast 
execution. Exact structure is not prescribed and definition is 
fuzzy. More unambiguous is Load-Store concept.

● Usual properties: all instructions are of the same length and 
can be executed in “single” cycle.

● MIPS, SPARC, PowerPC, ARM, RISC-V
● CISC (Complex Instruction Set Computers)

● Different machine instructions have different lengths.
● Instructions are usually designed for dense code.
● Motorola, Intel x86.
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The instruction cycle with exception processing

1. Initial setup/reset – set initial PC value, PSW, etc.

2. Read the instruction from the memory
● PC → to the address bus
● Read the memory contents (machine instruction) and 

transfer it to the IR,
● PC+l → PC, where l is length of the instruction

3. Decode operation code (opcode)

4. Execute the operation
● compute effective address, select registers, read 

operands, pass them  through ALU and store result

5. Check for exceptions/interrupts. If pending, service 
them

6. If not repeat from the step 2
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Interrupts and exceptions

● External interrupts/exceptions
● Method to process external asynchronous events. 

Processing cycle is stopped, CPU state is saved then the 
event is serviced. After the service is finished, CPU state is 
restored and the execution of interrupted program flow 
continues

● Exceptions synchronous with code execution
● abnormal events – page faults, protection, debugging
● software exceptions


	Slide 1
	GSOC 2016 Mentor Summit, GSoC 2020 is Your Turn
	QtMips – Origin and Development
	QtMips – Download
	John von Neumann Computer Block Diagram
	Computer based on von Neumann's concept
	The most important registers of the control unit
	The main instruction cycle of the CPU
	Compilation: C, Assembler, Machine Code
	Instruction Encoding Constrains
	RISC-V – Instruction Length Encoding
	Hardware realization of basic (main) CPU cycle
	Slide 13
	The goal of this lecture
	Subset of RISC-V Instructions to Implement
	The MIPS instruction format and instruction types
	The RISC-V instruction format and instruction types
	RISC-V Immediate Operand Encoding
	Opcode encoding
	CPU building blocks
	The load word instruction
	Single cycle CPU – implementation of the load instruction
	Single cycle CPU – implementation of the load instruction 1
	Single cycle CPU – implementation of the load instruction 2
	QtMips – MIPS Architecture Emulator
	The store word instruction
	Single cycle CPU – implementation of the store instruction
	Instruction for two registers addition
	Single cycle CPU – implementation of the add instruction
	Single cycle CPU – sub, and, or, slt
	Single cycle CPU – addi, ori, andi
	Single cycle CPU – implementation of beq
	Single cycle CPU – Throughput: IPS = IC / T = IPCstr.fCLK
	Single cycle CPU – Throughput: IPS = IC / T = IPCstr.fCLK 1
	Notes
	Control Unit Signals Generation
	The control unit of the single cycle cpu
	The control unit (CU)
	Control unit – more detailed/generic
	Some illustrative examples of micro-operation sequence
	Possible hardware realizations of the control unit
	One flip-flop per state control unit
	Finite state machine – Example
	Finite state machine of CU – example
	Finite state machine – Example 1
	Explicit counter based control unit
	Microprogrammed control unit
	Horizontal microprogrammed control unit
	Signals and next state encoding in microinstruction
	Wrap up structure of microprogrammed control unit
	Microprogrammed versus hardwired control unit
	Conclusion for microprogrammed control units
	RISC versus CISC CPU
	The instruction cycle with exception processing
	Interrupts and exceptions

