Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the left and right states defined as:
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are orthogonal:
b) Calculate the expectation values of o, in the states |d) and |l), and of o, in the state |r).

a) We take their product, which in the braket notation reads as (I|r), and verify that it is 0:
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b) We insert the Pauli matrices in the expression of the expected value for a general operator: (| A|v)

(d|og]d) = (0 1) (? (1J> <(1)> =(0 1) (é) =0
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2. a) Normalise the state
) = (1 = d)[u) + 2i|d).

b) For this (normalised) state, calculate the probability of getting both positive (+1) and negative (—1) spin
eigenvalues by measuring o, .

a) Normalisation means that taking the norm of the state, [1), the result is 1, that is:
But taking the squared norm in this case is:

(W) = (L =) - (1+1) + (20) - (~20) =244 =6

We should then choose the normalisation constant N by which we will multiply the state [¢) — N -

) such that
the result is 1:
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b) Py(+) = [(u|$)|* = (|u)*(ulyy) = %, and, since the state ¢ is normalised, we know that Py(—) = 1—1/3 =

2/3 = (dl)*.

3. [Nielsen & Chuang Ex. 2.17] (Eigendecomposition of a Pauli matrix) Find the eigenvectors, eigenvalues and
diagonal representations of o.

Oy = (O 07) 'sd‘ft(”y_/\]):i)\ :;\ =X 4+2=0= )=+l

For the eigenvalue —1 we have:
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The eigenvector is therefore v_ = <Lal;> . Choosing a = b =1, we have v_ = (1) .
And in an analogous way for the positive eigenvalue +1:
i
Vy = <1> .
4. Show that the eigenvalues of hermitian matrices, A = A', are real: A € R.

Consider the matrix element of the adjoint of the operator: (¢|Af|1))
The operator can either act on the ket (that is, from the left) or on the bra, in which case it is ’daggered’:

(8| AT|yp) = (Aglp)

Now, we know that for any bra(c)ket we have: (¢[1)) = (¥|¢)*

A fact that comes from the very definition of the inner product which is linear in the second argument and anti-linear
in the first, see for instance Nielsen and Chuang egs. (2.13) and (2.15)

Taking this remark into account:

(Bl AT[) = (Aglyp) = (Y| Ag)* = (| Al¢)*

Particularising for the case where ¢ = ¢ and taking into account the eigenvalue equation, Aly) = aly), we retrieve
the eigenvalues of the operator:

(V|A[Y) = (Wlaly) =a- (PlP) =a
Last, by assumption, we have AT = A, so:
(WA ) = (W|Aly) = (Y]AlY)" = a = a”

5. [Susskind & Friedman Ex. 5.2] For any observables A and B, and state [¢), derive Heisenberg’s uncertainty
relation: AA - AB > 1|(y|[A, B]|4)|, where (AA)? =Y (a — (A))?P(a), is the standard deviation of the operator
A.

Following the reasoning in Susskind 5.4 — 5.7, we first prove that (AA) = (A?) :

(AA)? =) (a—(A)*P(a) =Y (a—(A)*[{aly)]* = Y (a — (A))*aly) " (al)) = Y _(a — (A))*(]a){aly) =

a a a a

= (1Y _(a—(A))*|a)(al ¥) = (A?)
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Where the last claim in the brace can be shown using the completeness relation: A = 3" ala)(al :

(A—(A)?=(Q_a—(A)a)a)D_a— (A)la)al) = D (a—(A))(a~ (A))]a) (aa)(a| = Y (a— (A))*|a)(al
a a a,b —~ a
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Secondly, we prove [A, B] = [A, B], by computing explicitly the commutator:

A,B] = (A~ (A))(B— (B)) - (B~ (B))(A— (A)) = AB— A(B) - (A)B + (A)(B) ~ BA + B(A) + (B) — (A)(B)

Since expected values are just scalars, they commute with operators, and many cancelations take place, giving the
result. -

Last, by using Cauchy-Schwarz inequality 2|X||Y'| > [(X|Y) 4+ (Y| X)| and defining the states: |[X) = A|¥) , [Y) =
iB|¥), one obtains the result wanted by following equations (5.11)—(5.13) in Susskind.

6. Derive the evolution operator: U(t) = e~ ##*, by solving the Schrédinger equation: ih% = H(1)).

The Schrodinger equation , ik’ = Hap, is a first order linear homogenous ODE. Its solution is then given by:
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The constant & in the last term gives us the initial state of the system, |1)(0)). The evolution between this state and
any other in time | (¢)), is given by:

(1)) = e FHp(0) = [(1)) = U(1)]3(0))



