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Introduction to Quantum Walks

Quantum (Random) Walks: fundamental concept in the realm of quantum
computing

Distinct perspective on random processes compared to their classical
counterparts

Quantum walks, and algorithms that utilize them, have several important
features
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Speedups

Quantum walks often show quadratic speedups

Sometimes show exponential speedups

Hidden Flat Problem

Quantum walks form a model of universal (quantum) computation
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Definitions

Quantum walk: process on a graph G = (V ,E )

Basis states |x〉, x ∈ V

In what follows, for simplicity, let V = Z in what follows.
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The “naive” unitaries

Consider U ∈ U(N) such that

U : HG → HG

|x〉 7→ a|x − 1〉+ b|x〉+ c |x + 1〉 (1.1)

which conveys the information for the potential that |x〉
1 moves left with some amplitude a ∈ C,

2 stays at the same place with amplitude b ∈ C,

3 moves right with amplitude c ∈ C.
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Consistency

The quantum walk process needs exhibit consistent behavior across all vertices:

That is, a, b and c should be independent of x ∈ V (similarly to how the
probabilities of moving left/right are independent of x in the classical random
walk). Unfortunately, this definition does not work.

For the rest we explicitly set b = 0.
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The coin space

Solution: additional “coin” space: |i , x〉 for i ∈ {0, 1}, x ∈ Z, with Hilbert spaces
HC,HW. At each step, we perform two unitary operations:

(1) A coin flip operation C : HC → HC which “puts” the walker in
superposition, so it walks all possible paths simultaneously.

(2) Followed by a shift operation S : HW → HW the operator responsible for the
actual walk on G .

C |i , x〉 =

{
a|0, x〉+ b|1, x〉 if i = 0,

c |0, x〉+ d |1, x〉 if i = 1.
(1.2)

S |i , x〉 =

{
|0, x + 1〉 if i = 0,

|1, x − 1〉 if i = 1.
(1.3)
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Hadamard walker

If we choose for C the Hadamard matrix:

H =
1√
2

(
1 1
1 −1

)
, (1.4)

we have a ‘Hadamard walker” while S can be explicitly described as follows:

S =

(
|0〉〈0| ⊗

∞∑
x=−∞

|x + 1〉〈x |
)

+

(
|1〉〈1| ⊗

∞∑
x=−∞

|x − 1〉〈x |
)
. (1.5)
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The walker’s unitary step and asymmetry

A step of a quantum walk amounts to the unitary U = SC ∈ U(N).

Figure: Probability distribution of quantum walk, starting at |−, 0〉, after different
numbers of steps.
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Bias

The quantum walker’s initial state is the product of the coin state and the
position state. The former state controls the direction in which the walker moves.
Therefore, the choice of coin operator leads to vastly different constructive and
destructive interference patterns.

This behavior is in stark contrast to a classical random walk, where the walker has
equal probability of moving left or right at each step, and there is no preference or
bias for either direction. The bias in a quantum walk is a unique characteristic of
the underlying physics.
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Example G = Z

Example on a bounded subset of the integer line with C = H. It is common to
assume that the walker starts at position x = 0 with the coin state being the |0〉
or |1〉 state.

-2 -1 0 1 2

|+, 0⟩
Figure: Beginning a quantum walk, after the coin operator has been applied, at |+, 0〉, by
applying C = H on |0, 0〉, on the Z-line.
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Example G = Z

For ease of notation, we denote the r -th application of the quantum walk operator
U by U(r)|ψr−1〉.

The quantum walk amounts to the following set of operations:

Select coin operator C = H

Initialize the state (position of the walker): |000〉 = |0〉C ⊗ |0〉W = |0, 0〉 (or
|1, 0〉)
for r ∈ N repeat U r |000〉 as:

I Apply the coin operator: C |000〉
I Apply the shift operator: S(C |000〉)

Measure U r |000〉

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 12 / 80



Example G = Z

For ease of notation, we denote the r -th application of the quantum walk operator
U by U(r)|ψr−1〉.

The quantum walk amounts to the following set of operations:

Select coin operator C = H

Initialize the state (position of the walker): |000〉 = |0〉C ⊗ |0〉W = |0, 0〉 (or
|1, 0〉)
for r ∈ N repeat U r |000〉 as:

I Apply the coin operator: C |000〉
I Apply the shift operator: S(C |000〉)

Measure U r |000〉
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Example G = Z

Therefore, the initial state is |000〉 ≡ |ψ0〉 and we obtain

|ψ1〉 =
|0,−1〉+ |0, 1〉√

2
(1.6)

|ψ2〉 =
|0,−2〉+ |1, 0〉+ |0, 0〉 − |1, 2〉

2
(1.7)

|ψ3〉 =
|1,−3〉 − |0,−1〉+ 2(|0〉+ |1〉)|1〉+ |0, 3〉

2
√

2
(1.8)

This state is not symmetric around the origin and the probability distributions will
not be centered at the origin. This is clear from Fig. 1.1. As a matter of fact the
standard deviation of the walker, after r iterations of U is:

σ(r) ≈ 0.54r (1.9)
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Standard deviation
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Figure: The standard deviation of a classical versus quantum walk as a function of the
steps.
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The walker’s efficiency
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Quantum Walk on a Complete Graph

1 2 3 4

5 6 7

8

1

2

3

4

5

6

7

8

Figure: An asymmetric non-complete graph G = (8, 10) and its symmetric completion
G = K8.
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Example G = K4

Easy-to-work-with graph, the complete graph K4 with 4 vertices and 6 edges and
perform such search.

Let us commence with a classical random walk on K4 wherein we are looking to
“find” the marked vertex #2 (but we do not know it). In the Fig. next we display
the success probability after 1 and 2 steps.
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Classical walk on G = K4

Figure: Left: At step 1 the probability that the walker “lands” on vertex #2 is 1/4. Right:
At step 2 the probability that the walker “lands” on vertex #2 is 1/2. The loop in vertex
#2 denotes that this vertex is a trap: it allows us to know the walker landed on the
marked vertex and the walker is not allowed to attain any other state.
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Success Probability
Overall, the trend for the success probability continues, and we observe the
behavior of the walker. For large N, the success probability of 1/2 is reached after
O(N) steps.

Figure: The success probability of a classical random walk on symmetric G = K4.
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Quantum Grover Walks on K4

We have to implement the coin and shift operators. Diagrammatically at step 0
we are back at the initial state of the classical walk. In total we have 12
amplitudes to consider;

1 2

3 4

a12

a13
a14

a21

a24
a23

a31
a34

a32 a41
a42

a43

1 2

3 4

a12

a13
a14

a21

a24
a23

a31
a34

a32 a41
a42

a43

Figure: Left: the state of the quantum walk is a superposition of the amplitudes aij ∈ C,
for all i , j ∈ V (K4). Once the oracle is applied the marked state’s amplitudes obtain a
negative sign (marked with blue and in analogy with Grover’s operator).
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Quantum Grover Walks on K4

Initially, we have aij = 1√
12

for all i , j .

Then, the coin flip operator C , which here is taken to be Grover’s diffusion
operator, amounts to marking the state we look for, assigning a negative sign to
the corresponding amplitudes. The marking is done by assuming access to an
oracle O (essentially the same oracle found in Grover’s operator) that is able to
perform this operation. Then, it changes the direction of adjacent red-blue pair
vertices.
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Quantum Grover Walks on K4

Then S reverses the amplitude values along their mean at each vertex. For
example, the mean of the vertex #1 after application of C is

µ12 =
a21 + a13 + a14

3
. (1.10)

Therefore, S amounts to a map S : aij 7→ a′ij = µ12 − aij , for the three pairs
{21, 13, 14}. Of course, this is applied to all amplitudes for all vertices.
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Quantum Grover Walks on K4

1 2
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a′34

a′23 a′41
a′24

a′43

Figure: Left: Coin operator is applied and reverses the relevant amplitudes. The shift
operator reverses these amplitudes along their means.
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Quantum Grover Walks on K4

In the second step, we already get the amplitude asymmetry resulting from the
oracle flipping the signs of the marked vertex followed by C and then S . As a
result, one observes that:

probability of success at step 1 =
11

108
≈ 0.1 (1.11)

probability of success at step 2 =
25

36
≈ 0.7 (1.12)

probability of success at step 3 = ... (1.13)
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Quantum Grover Walks on K4

Overall, for a large number of vertices N, the probability that the walker lands on
the marked vertex is 1/2 is given after π

√
N steps and therefore the run-time is

O(
√
N). This marks another example in which quantum walks portray a quadratic

speedup over classical random walks.

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 25 / 80



Szegedy Walks

Consider an undirected and unweighted graph G . Szegedy’s quantum walk occurs
on the edges of the bipartite double cover of the original graph.

If the original graph is G , then its bipartite double cover is the graph tensor
product G × K2 which duplicates the vertices into two partite sets X and Y .

A vertex in X is connected to a vertex in Y if and only if they are connected in
the original graph;
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Szegedy Walks

4 3

2

1

4

3

2

1 3

4

2

1

Figure: Left: A graph G . Right: The bipartite double cover of G . The double cover
contains double the number of edges.
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Szegedy Walks

The Hilbert space of a Szegedy walk: C2|E |.

Let us denote a walker on the edge connecting x ∈ X with y ∈ Y as |x , y〉. Then
the computational basis is:

|x , y〉, x ∈ X , y ∈ Y , x ∼ y (1.14)

where x ∼ y denotes that the vertices x and y are adjacent.
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Szegedy Walks
Szegedy’s walk is defined by repeated applications of the unitary

U = R2R1, (1.15)

where

R1 = 2
∑
x∈X
|φx〉 〈φx | − 111 (1.16)

R2 = 2
∑
y∈Y
|ψy 〉 〈ψy | − 111, (1.17)

are reflection operators and

|φx〉 =
1√

deg(x)

∑
y∼x
|x , y〉 (1.18)

|ψy 〉 =
1√

deg(y)

∑
x∼y
|x , y〉 (1.19)
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Szegedy Walks

Before:

deg(x) is the degree of vertex x

y ∼ x denotes the sums over the neighbors of x

Observe that |φx〉 is the equal superposition of edges incident to x ∈ X , and |ψy 〉
is the equal superposition of edges incident to y ∈ Y .

Here, there is an equivalent of the “inversion about the mean” operation of
Grover’s algorithm, which we also saw previously in the context of walks over K4.
The reflection R1 goes through each vertex in X and reflects the amplitude of its
incident edges about their average amplitude, and R2 similarly does this for the
vertices in Y .
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Szegedy Walks

Classically: search for a marked vertex on G amounts to randomly walks until a
marked vertex is found (then walker freezes)

Quantumly: Szegedy’s quantum walk searches by quantizing this random walk
with absorbing vertices and the resulting bipartite double cover. Search is
performed by repeatedly applying the unitary

Ũ = R̃2R̃1, (1.20)

where the tilde distinguishes in that we are searching for absorbing vertices. At
unmarked vertices they act as R̃j = Rj simply by inverting the amplitudes of the
edges around their average at each vertex. At the marked vertices, similarly to the
K4 case, they act by flipping the signs of the amplitudes of all incident edges. A
similar search can be performed using Grover’s diffusion operator.
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unmarked vertices they act as R̃j = Rj simply by inverting the amplitudes of the
edges around their average at each vertex. At the marked vertices, similarly to the
K4 case, they act by flipping the signs of the amplitudes of all incident edges. A
similar search can be performed using Grover’s diffusion operator.
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Szegedy Walks

4

3

2

1 3

4

2

1

Figure: The marked state corresponds to vertex #2 which is an absorbing vertex:
〈2Y |2X 〉 = 〈2X |2Y 〉 = 0.
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Continuous-time Quantum Walks

Continuous-time random walk but quantum..

Will allow us later to understand the universality of quantum walks.
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Continuous-time Quantum Walks

Continuous-time random walk on a graph G = (V ,E ) with adjacency matrix A
defined as:

Ai ,j =

{
1, (i , j) ∈ E

0, (i , j) /∈ E
(1.21)

for every pair i , j ∈ V . In this definition we do not allow self-loops therefore the
diagonal of A is zero.
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 34 / 80



Continuous-time Quantum Walks

There is another matrix associated with G that is of equal importance, the
Laplacian of G defined as:

Li ,j =


− deg(i), i = j

1, (i , j) ∈ E

0, otherwise.

(1.22)

deg(i) denotes the degree of vertex i .
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Continuous-time Quantum Walks

Let pi (t) denote the probability associated with the vertex i at time t. The
continuous-time random walk on G is defined as the solution of the differential
equation

d

dt
pi (t) =

∑
j∈V

Ljkpj(t). (1.23)

This can be viewed as a discrete analog of the diffusion equation.

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 36 / 80

https://en.wikipedia.org/wiki/Diffusion_equation


Continuous-time Quantum Walks

Let pi (t) denote the probability associated with the vertex i at time t. The
continuous-time random walk on G is defined as the solution of the differential
equation

d

dt
pi (t) =

∑
j∈V

Ljkpj(t). (1.23)

This can be viewed as a discrete analog of the diffusion equation.
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Continuous-time Quantum Walks

Observe that
d

dt

∑
j∈V

pj(t) =
∑
j ,k∈V

Ljkpk(t) = 0 (1.24)

You have to prove it ;)

An initially normalized distribution remains normalized; The solution of the
differential equation can be given in closed form as:

p(t) = eLtp(0). (1.25)
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Continuous-time quantum walks

Eq. (1.24) is very similar to the Schrödinger equation

ı
d

dt
|ψ〉 = H|ψ〉, (1.26)

Instead of probabilities of Eq. (1.24) we can insert the amplitudes
qj(t) = 〈j | ψ(t)〉 where {|j〉 : j ∈ V } is an orthonormal basis H. Then, we obtain
the equation:

ı
d

dt
qj(t) =

∑
k∈V

Ljkqk(t), (1.27)

where the Hamiltonian is given by the Laplacian L.

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 38 / 80



Continuous-time quantum walks

Eq. (1.24) is very similar to the Schrödinger equation

ı
d

dt
|ψ〉 = H|ψ〉, (1.26)

Instead of probabilities of Eq. (1.24) we can insert the amplitudes
qj(t) = 〈j | ψ(t)〉 where {|j〉 : j ∈ V } is an orthonormal basis H. Then, we obtain
the equation:

ı
d

dt
qj(t) =

∑
k∈V

Ljkqk(t), (1.27)

where the Hamiltonian is given by the Laplacian L.
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Continuous-time quantum walks

The solution of reads:

U(t) = e−ıHt = e−ıLt , (1.28)

and the evolution of an initial state from t = 0 to some arbitrary time t is given
by:

|ψ(t)〉 = U(t)|ψ(0)〉. (1.29)
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Hidden Flat Problem

This is an algorithm that aims to find hidden nonlinear structures over Galois
fields Fp, for p prime.

Galois fields over primes are also called prime fields. For each prime number p, the
prime field Fp of order p is constructed as the integers modulo p, that is Z/pZ.
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Hidden Flat Problem

Figure: Equidistant circles of various radii over F2
q that lie on an unknown flat H on which

the radii sit at. Note that the density of points in each sphere is approximately the same
since they live on a Galois field.
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Hidden Flat Problem

Let Str (Fd
q) denote the sphere of radius r with center t over Fd

q . Additionally, for a
finite set S , we denote by

|S〉 :=
1√
|S |
∑
s∈S
|s〉 (1.30)

the normalized uniform superposition over elements of S .
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Hidden Flat Problem

Using f1, f−1 – let us assume they exist indeed – it is possible to construct the
state

ρr :=
1

qd

∑
t∈Fq

|Sr + t〉 〈Sr + t| (1.31)

t = 0 implied. The flat we are looking for is such a discrete set H ⊆ Fq allowing
us to construct

ρ1 :=
1

|H|
∑
h∈H
|S1 + h〉 〈S1 + h| (1.32)

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 43 / 80



Hidden Flat Problem

Using f1, f−1 – let us assume they exist indeed – it is possible to construct the
state

ρr :=
1

qd

∑
t∈Fq

|Sr + t〉 〈Sr + t| (1.31)

t = 0 implied. The flat we are looking for is such a discrete set H ⊆ Fq allowing
us to construct

ρ1 :=
1

|H|
∑
h∈H
|S1 + h〉 〈S1 + h| (1.32)

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 43 / 80



Hidden Flat Problem

Goal: determine H by making measurements on this state.

How? By making measurements on this state. Implement a quantum walk is that
moves the amplitude from |S1 + h〉 to |h〉.

If a sufficiently large fraction of the amplitude is moved, then the hidden flat can
be determined by (classically) solving a noisy linear algebra problem.
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Hidden Flat Problem

To move amplitude from unit spheres to their centers, we will use a
continuous-time quantum walk on the Winnie-Li graph.

Figure: A Winnie-Lie graph over F2
p centered at x = 0. The edges are not shown.
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Hidden Flat Problem

This graph has vertex set Fd
q , and edges between points x , x ′ ∈ Fd

q with
∆ (x − x ′) = 1.

Thus, its adjacency matrix (that serves as a Hamiltonian) is

A :=
∑
x∈Fd

q

∑
s∈S1

|x + s〉〈x | (1.33)
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Hidden Flat Problem

Continuous-time quantum walk for time t:

U(t) = e−ıAt

This unitary operator can be efficiently implemented on a quantum computer
provided that we can efficiently transform into the eigenbasis of A, and can
efficiently compute the eigenvalue corresponding to a given eigenvector.
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Hidden Flat Problem

Eigenvectors of (1.33):

|k̃〉 :=
1√
qd

∑
x∈Fd

q

ωk·x
p |x〉, (1.34)

for k ∈ Fd
q . By Fourier transform of

U :=
1√
qd

∑
x ,k∈Fd

q

ωk·x
p |k〉〈x | (1.35)

transform to the eigenbasis of A where the corresponding eigenvalues are given by
the Fourier transform of a unit sphere λk . Almost all of these eigenvalues can be

computed with complexity O
(√

qd−1
)

.

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 48 / 80



Hidden Flat Problem

Eigenvectors of (1.33):

|k̃〉 :=
1√
qd

∑
x∈Fd

q

ωk·x
p |x〉, (1.34)

for k ∈ Fd
q . By Fourier transform of

U :=
1√
qd

∑
x ,k∈Fd

q

ωk·x
p |k〉〈x | (1.35)

transform to the eigenbasis of A where the corresponding eigenvalues are given by
the Fourier transform of a unit sphere λk . Almost all of these eigenvalues can be

computed with complexity O
(√

qd−1
)

.
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Hidden Flat Problem

Require ρH

for t = 1/
√
qd−1 log q: Perform a continuous-time quantum walk with

U = e−ıAt

Measure in the computational basis

Each point in H occurs with probability |H|−1
(

1/ log q +O
(

1/ log3/2 q
))

, and

any point not on H occurs with probability O
(
q−d

)
.

Assuming d = O(1) and odd ∃ quantum algorithm to determine the HFP time
poly(log q). This provides an exponential speedup over classical algorithms.
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Universality of Quantum Qalks
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Universality of Quantum Walks

Quantum walks form a universal model of computation.

We will show this using the concept of the “universal computation graph”.

Universality: any problem solved by a gate-based quantum computer also
solved by a quantum walk.

In principle, any quantum algorithm we have seen previously can be recast as
a quantum walk algorithm.
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Universality of Quantum Walks

Consider a (continuous) walker on Z where the basis states are |x〉.

The eigenstates of the adjacency matrix are the (normalized) momentum states
|k〉, that is, the states that satisfy

〈x |k〉 = e−ıkx , (1.36)

with 〈k |k ′〉 ∼ δ(k − k ′). Intuition: |k〉 are the momentum eigenstates which are
used to understand how scattering (particle interactions) works in quantum
mechanics (and quantum field theory).
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Universality of Quantum Walks

In momentum space, with orthogonal states |φk〉 ≡ |k〉, we know that

|k〉 =
∑
x∈Z

e−ıkx |x〉. (1.37)

These are also referred to as momentum states however, they are not normalizable
(think as maps E (G )→ C).

Using the adjacency matrix as the Hamiltonian H, it follows that

H|k〉 = 2 cos(k)|k〉. (1.38)
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Universality of Quantum Walks
Next, let us consider a finite graph G and create out of it an infinite graph with
adjacency matrix H by attaching semi-infinite lines to M of its vertices.

j0 j1

j2

j3

Figure: Universal computation graph.
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Last minute addition
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Universality of Quantum Walks

The states living on the j-th line are labeled as |x , j〉 where |0, j〉 corresponds to
the state in G and where x is allowed to walk along the j-th line. The adjacency
matrix of this graph is denoted by H and each of its eigenstates must be a
superposition of the form of Eq. (1.37) with momenta k taking any of the values:

±k with eigenvalues 2 cos(k),

k = ±iκ and eigenvalue 2 cosh(κ),

k = ±iκ+ π and eigenvalue −2 cosh(κ). Here κ ∈ R≥0. We can truncate
|k〉 such that it has support over a finite number of vertices. Denote the
truncated state supported over L vertices as

|k〉L :=
1√
L

L∑
x=1

e−ıkx |x〉. (1.39)
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Universality of Quantum Walks

In the physics literature, such states are called wave packets and the sign of the
exponential denotes the direction of the wave; see Fig. 1.14.

-4 -3 -2 -1 0 1 2 3 4

k −→

Figure: A wave packet supported over 2 vertices moving coming from the (far) left.

The infinite line in Fig. 1.14 becomes a universal computation graph by inserting
a finite graph G .
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Frame Title

As seen in Fig. 1.15. In principle, one can prepare a wave packet as the one with
momentum k and let it propagate.

−4 −3 −2 −1 1 2 3 4
G

k →

Figure: Inserting a finite graph G into the integer line, yields a one-dimensional universal
computation graph.
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Universality of Quantum Walks

This amounts to a dynamic scattering process. Let us denote this incoming (to
G ) wave packet as

|w(k)〉L if the wave packet comes from the left, (1.40)

|w(k)〉R if the wave packet comes from the right. (1.41)

The dynamics correspond to the following equations:

〈xL|wL(k)〉 = e−ıkx + RL(k)eıkx (1.42)

〈xR|wL(k)〉 = TL(k)eıkx (1.43)

H|w(k)〉 = 2 cos(k)|w(k)〉, (1.44)

where RL is a reflection coefficient and TL is the transfer coefficient. Similarly, we
can write down the equations for right-coming wave packets.
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Universality of Quantum Walks

−4 −3 −2 −1 1 2 3 4
G

← RL TL →

Figure: Part of the wave packet will be reflected and part will be transfered through G .
The coefficients RL,R,TL,R are called reflection and transfer coefficients.
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Universality of Quantum Walks

For every scattering process, as the one above, there is a scattering matrix S . In
this case,

S =

(
RL TL

RR TR

)
, (1.45)

and it is an element of U(2).

More generally, an arbitrary number of semi-infinite lines can be considered as in
Fig. 1.13 with an arbitrary graph G . If there are N semi-infinite lines, then
S ∈ U(N).
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 61 / 80



Universality of Quantum Walks

It is possible to encode a qubit state by considering two universal computation
diagrams in one dimension:

: |1⟩
-4 -3 -2 -1 0 1 2 3 4

: |0⟩
k = π/4

k = π/4

Figure: A single qubit can be represented by two infinite lines. Crucially the momentum
must be equal to π/4. The qubit is in the |0〉 state if the wavepacket propagates in the
top line and in the |1〉 state if at the bottom.
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Universality of Quantum Walks

As before, we can insert a graph G with 4 semi-infinite lines as in Fig. 1.18.

−4 −3 −2 −1 1 2 3 4G
|0⟩out
|1⟩out

|0⟩in
|1⟩in

Figure: A two-qubit unitary U can be encoded through G to be implemented as a
quantum walk.
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Universality of Quantum Walks

A unitary is implemented by inserting a graph G such that its corresponding
S-matrix has the structure

S =

(
0 U†

U 0

)
, (1.46)

where U ∈ U(2). Therefore, a unitary U is implemented by the scattering process
of quantum walkers, through a graph G that encodes it.
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Universality of Quantum Walks
Childs showed it is possible to implement the unitaries

Uπ/4 =

(
e−ıπ/4 0

0 1

)
, Ub = − ı√

2

(
1 −ı
−ı 1

)
, (1.47)

which form a universal gate set for one-qubit operations; up to a certain precision
ε, any single-qubit gate can be implemented by a string of these two unitaries.

|0⟩in |0⟩out

|1⟩in |1⟩out

|0⟩in |0⟩out

|1⟩in |1⟩out

Figure: The graphs encoding Uπ/4 and Ub.
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Universality of Quantum Walks

This construction was further generalized to n-qubit gates proving that quantum
walks form a universal model of computation.

G

Figure: The graph G obtained by attaching N semi-infinite paths to a graph G .
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Universality of Quantum Walks

By considering a finite graph G and attaching N/2 = n pairs of semi-infinite
paths, we are able to encode n qubits. Eventually, it is possible to encode any
n-qubit unitary to a graph G to obtain a quantum walk equivalent of any arbitrary
circuit.

G

|00 . . . 00⟩out
|01 . . . 0⟩out

|11 . . . 1⟩out

|00 . . . 0⟩in
|01 . . . 0⟩in

|11 . . . 1⟩in

Figure: If G is chosen to encode a desired unitary U ∈ U(n) the circuit can be
implemented by a quantum walk.
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QAE and Monte Carlo Sampling
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QAE and Monte Carlo Sampling

Quantum Amplitude Amplification (QAE) was discovered by Gilles Brassard,
Peter Hoyer, Michele Mosca and Alain Tapp

Generalizes Grover’s algorithm

Candidate to replace Monte Carlo sampling technique (it runs quadratically
faster)
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Classical Monte Carlo

Consider a one-dimensional random variable X and a function f : R→ [0, 1].

Assume that the mean µ = E[f (X )] <∞ and the standard deviation
σ2 = V[f (X )] <∞ are well defined.

Central Limit Theorem ensures that for i.i.d. random variables (X1, . . . ,XN),
following the same distribution as X , for N →∞, the quantity

√
N µ̂−µ

σ converges
to a mean-zero Gaussian with unit variance N (0, 1).
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Classical Monte Carlo

This implies that for any ε > 0 we estimate that

lim
N→∞

P (|µ̂− µ| ≤ ε) = lim
N→∞

P

(
|N (0, 1)| ≤ ε

√
N

σ

)
. (2.1)

In turn, this implies that for any z > 0 and δ ∈ (0, 1), in order to obtain an
estimate of the form P (|µ̂− µ| ≤ ε), N = O(1/ε2) samples are required.
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Quantum Replacement of Monte Carlo

Consider a unitary operator A that acts on an n-qubit register as follows:

A|0〉⊗n =
∑

x∈{0,1}k
ax |ψx〉|x〉, (2.2)

for k < n, where |ψx〉 is a quantum state consisting of n − k qubits and |x〉 is a
state consisting of k qubits.

Intuition: We are interested in A because it allows us to encodes a distribution of
interest, with encoded data in the states |x〉, for which we want to estimate
certain properties (e.g. mean or other moments).
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Quantum Replacement of Monte Carlo

States {|ψ〉x}x∈{0,1}k are assumed to be orthogonal. Next, assume that there is a
unitary W acting as follows:

W|x〉|0〉 = |x〉
(√

1− f (x)|0〉+
√
f (x)|1〉

)
. (2.3)

Intuition:This creates a quantum state that encodes the function f (x) of interest.
The quantum state t creates captures the information about the properties pf
f (x) in the amplitudes of the ancilla qubits |0〉 and |1〉.
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Quantum Replacement of Monte Carlo

Something interesting happens when combining:

G := (111n−k ⊗W)(A⊗ 111k). (2.4)

Applying G to a |0〉⊗(n+1) qubit register yields the following state:

|ψ〉 = G|0〉⊗(n+1) (2.5)

=
∑

x∈{0,1}k
ax |ψx〉|x〉

(√
1− f (x)|0〉+

√
f (x)|1〉

)
, (2.6)
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Quantum Replacement of Monte Carlo

It is customary to refer to these two states as the “bad state”:

|ψbad〉 :=
∑

x∈{0,1}k
ax
√

1− f (x)|ψx〉|x〉, (2.7)

and the “good state”:

|ψgood〉 :=
∑

x∈{0,1}k
ax
√
f (x)|ψx〉|x〉. (2.8)
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Quantum Replacement of Monte Carlo

By considering the projection operator

P := 111n ⊗ |1〉〈1|, (2.9)

we can measure the probability that the last state is the |1〉 state,

〈ψ|P†P|ψ〉 = . . . (2.10)

= |ψgood|2. (2.11)
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Quantum Replacement of Monte Carlo

From the definition of a good state, we can further see that

|ψgood|2 =
∑

x∈{0,1}k
|ax |2f (x), (2.12)

which corresponds, precisely, to the mean µ = E(f (X )).

Estimating µ for a distribution f amounts to running the circuit G, measuring the
output and determining the probability of observing the state |1〉.
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Quadratic Speedup

Concretely, assume access to a unitary

U|0〉 =
√

1− µ|ψbad〉+
√
µ|ψgood〉. (2.13)

Then, for any N ∈ Z≥0, the QAE algorithm outputs the estimate µ̂ such that

|µ̂− µ| ≤ 2π

√
µ(1− µ)

N
+
π2

N2
, (2.14)

with probability at least 8/π2 by quering the algorithm exactly N times.
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Quadratic Speedup

By using the so-called “Powering Lemma” which states (approximately) that for
any δ ∈ (0, 1), it is sufficent to iterate with U approximately O(log(1/δ)) times to
obtain

P(|µ̂− µ| ≤ ε) ≥ 1− δ. (2.15)
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Quadratic Speedup

It is required to iterate G approximately O(N log(1/δ)) times to obtain the
guarantee of Eq. (2.15), where

ε = 2π

√
µ(1− µ)

N
. (2.16)

That is, for fixed δ the computational cost to obtain (2.15) is

O(1/ε) (2.17)

which is quadratically better than the N = O(1/ε2) samples required by classical
Monte Carlo.
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