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Practical aspects of quantum computing

Today, we want to make a few remarks on the practical aspects of use of what we
have seen in the financial services industry. Therein, one needs to deal with many
more vendors (i.e., salesmen) than universities (i.e., researchers). Let us start with
a few remarks on the practical aspects of quantum annealers, and the vendors
thereof.
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D-Wave Ocean

While there are several quantum annealers across the world in academic
environments, the most well-known vendor is D-Wave Systems.

You can experiment with pip install dwave-ocean-sdk, D-Wave’s
quantum annealing emulator.

Other vendors that develop superconducting quantum annealers are Qilimanjaro
and Avaqus.
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 3 / 57

https://www.dwavesys.com/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://www.qilimanjaro.tech/
https://www.avaqus.eu/home


D-Wave Ocean

While there are several quantum annealers across the world in academic
environments, the most well-known vendor is D-Wave Systems.

You can experiment with pip install dwave-ocean-sdk, D-Wave’s
quantum annealing emulator.

Other vendors that develop superconducting quantum annealers are Qilimanjaro
and Avaqus.
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Analogue Quantum Computation

Recall, QA is a type of analog quantum computation based on the concept of
adiabatic quantum computation (AQC).

As such, it is possible to devise systems that perform AQC with stoquastic
Hamiltonians but are not necessarily based on superconducting qubits.

Such examples include Pasqal and QuEra that use arrays of Rydberg atoms which
are highly excited atoms with a large distance between the electron and the
nucleus.
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Hybrid Solvers

Several companies manufacture
specialized classical hardware
(e.g., based on FPGAs) that
simulate quantum annealing, for
example Fujitsu and Hitachi.
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Tensor Networks
Finally, let’s mention another approach to solve a number of interesting
optimization problems, again via a QUBO reformulation, called tensor networks.
NVIDIA is a major player.

Essentially, tensor networks clasically “mimic” the behavior of a large number of
weakly entangled quantum states.
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Focus: D-Wave

D-Wave being the first company to file for a patent.

D-Wave gained a lot of notice once multi-qubit quantum tunneling effects were
observed experimental and showed the computational potential it may have.

Their most advanced is the 5,760-qubit Advantage machine with which the
following study was performed:
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Measuring Performance

It is commong to use a metric known as Time-To-Solution (TTS) when
performing benchmarking studies.

Data collected from multiple runs of the QA are used to compute the probability
of finding a ground state solution for the given configuration of (adjustable)
parameters. This probability is:

pTTS :=
# of ground state solutions

# of total QA runs
. (1.1)
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TTS proper

The TTS proper is defined as the expected time to obtain the ground state
solution at least once with success probability α and it is computed as:

TTS = trun
1− logα

1− log pTTS
. (1.2)

Here trun is the annealing time for a single run of the QA and α = 0.99 by default.

Scheduling is a NP-Hard problem and you should expect that TTS scales
exponentially with the size of the input N.
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TTS proper

Note that, in practice, when measuring TTS several aspects need to be considered
(many of which are true for other models of quantum computation too), mainly:

problem preparation time

annealing time

readout time

repetition
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Exponential scaling

Quantum optimizers such as QA (are hoped to) solve NP-Hard combinatorial
optimization problems in time proportional to exp(βNγ) as N →∞, for positive
coefficients β (scaling exponent) and γ.

Reasonable to expect (since scheduling problems are NP-Hard) TTS should scale
exponentially with the problem size N in the asymptotic limit for γ = 1.

The value of the β parameter that turns out to fit the experimental results
TTS = T0 expβN, for some constant T0 > 0, ranges between 1.01 and 1.17
depending on the D-Wave machine.
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It’s a tough job
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What can we hope from QA?

The conclusion is that the experimental results align with the expectation that QA
(and similar quantum optimization techniques) may be able to solve NP-Hard
combinatorial optimization problems with an exponential time complexity.

The fact that β is close to 1 might indicate a near-linear scaling with problem
size, which is promising for solving large optimization problems.

However, even with this seemingly near-linear scaling, the time and resources
required can still be large for sufficiently big problem sizes.
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More on QUBO

In this section we aim to discuss a few more QUBO formulations of interesting
hard problems.
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Graph Partitioning

Consider an undirected graph G = (V ,E ). The task is to partition the set of
vertices V into two subsets of equal size N/2, such that the number of edges
connecting the two subsets is minimized.

1

2

3

4

5

6

7

8

1

2 5

63

4 7

8
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Graph Partitioning

We can directly assign spin variables represented by the graph vertices where
x = +1 values mean the blue class and x = −1 values mean the orange class.

The problem is solved by considering the following cost function:

L(x) = LA(x) + LB(x) (2.1)
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Graph Partitioning

LA(x) = α

N∑
i=1

xi , (2.2)

This term provides a penalty term if the number of elements in the blue set is not
equal to the number of elements in the orange set.
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Graph Partitioning

LB(x) = β
∑

(u,v)∈E(G)

1− xuxv
2

, (2.3)

This term provides a penalty each time an edge connects vertices from different
subsets.

β > 0: wish to minimize the number of edges between the two subsets

β < 0: must be small enough so that it is never favorable to violate the other
constraint LA
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Binary Integer Linear Programming

Consider the binary vector x = (x1 . . . xN) ∈ {0, 1}N . Binary integer linear
programming (BILP) amounts to the following problem:

max
x∈{0,1}N

cx

s.t. Ax = b

A ∈ RM×N

b ∈ RM

(2.4)
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Binary Integer Linear Programming

A variety of problems can be formed as BILPs (for example in the context of
banking revenue maximization subject to regulating constraints).

The cost function L(x) corresponding to the QUBO formulation is

L(x) = LA(x) + LB(x), (2.5)
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Binary Integer Linear Programming

LA(x) = α

m∑
j=1

(
bj −

N∑
i=1

Aijxi

)2

, (2.6)

α is a constant.

Note that LA(x) = 0 enforces the constraint Ax = b. When this is not met, we
get an overall penalty to the objective function.
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Binary Integer Linear Programming

LB(x) = −β
N∑
i=1

cixi , (2.7)

for β < α another constant.

onstants α and β are tuning parameter that determines the relative importance of
maximizing the objective function compared to satisfying the constraints.

The condition β < α ensures that the constraints take precedence over the
objective function, which is usually the case in constrained optimization problems.

The reason for the minus sign is?
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 22 / 57



Binary Integer Linear Programming

LB(x) = −β
N∑
i=1

cixi , (2.7)

for β < α another constant.

onstants α and β are tuning parameter that determines the relative importance of
maximizing the objective function compared to satisfying the constraints.

The condition β < α ensures that the constraints take precedence over the
objective function, which is usually the case in constrained optimization problems.

The reason for the minus sign is?
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Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization
which is part of modern portfolio theory (MPT).

A typical portfolio optimization is formulated as follows:

N number of assets (things you can buy or sell in a market)

µi expected return of asset i ∈ [N]

σij the covariance between the returns of asset i and asset j

R the target portfolio return
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 23 / 57



Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization
which is part of modern portfolio theory (MPT).

A typical portfolio optimization is formulated as follows:

N number of assets (things you can buy or sell in a market)

µi expected return of asset i ∈ [N]

σij the covariance between the returns of asset i and asset j

R the target portfolio return
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Portfolio optimization

The decision variables are the weights w ∈ RN .

The standard approach here is the Markowitz mean-variance approach. This
amounts to the following quadratic program:

min
w∈RN

N∑
i ,j=1

wiwjσij

s.t.

N∑
i=1

wi = 1,

N∑
i=1

wiµi = R.

(2.8)
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Portfolio optimization
Intuition

Problem amounts: construction of an optimal portfolio from the set of all possible
assets with known characteristics such as their returns, volatilities, and pairwise
correlations.

Expect to select M ≤ N assets from the set of available N assets that should be
the best possible choice according to the criteria set by the constraints.
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Portfolio optimization

Consider the case where where weights w are discrete; this situation starts
resembling like a NP-Complete problem.

The previous problem can be mapped to a QUBO suitable for QA. This is done as
follows.

We define the QUBO objective as:

L(x) =
N∑
i=1

aixi +
N∑
i=1

N∑
j=i+1

bijxixj . (2.9)
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Portfolio optimization

In this context

xi =

{
1 means asset i is selected,

0 means asset i is not selected.
(2.10)

Then, given the N asset set x = {x1, . . . , xN} find the binary configuration that
minimizes the L(x) subject to the cardinality constraint that can be added via a
penalty term Lpen(x).
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Portfolio optimization

Specifically, the requirement that
∑N

i=1 xi = M is encoded via:

Lpen(x) = P

(
M −

N∑
i=1

xi

)2

(2.11)

Coefficients ai reflect the asset attractiveness as a standalone (think user defined
hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for
ai ; assets with small expected risk-adjusted returns penalised with positive values
of ai .

bij : pairwise diversification penalties (if positive) and rewards (if negative) For all
purposes of this course, assume ai and bij as given.
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Portfolio optimization

The total QUBO to be solved is:

min
x∈{0,1}N

Ltotal(x) := L(x) + Lpen(x) (2.12)
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Portfolio optimization
Intuition

The minimization of this QUBO optimizes for the risk-adjusted returns by using
the so-called Sharpe ratio: The ratio describes how much excess return you
receive for the extra volatility you endure for holding a riskier asset.

This is computed as (r − r0)/σ where r is the expected (annualised) asset return,
r0 is the applicable risk-free interest rate and σ is the asset volatility.

Expected returns can be either estimated as the historical returns or derived
independently using e.g. Monte Carlo simulations.
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QBoost

Let us discuss how QBoost is used in the context of Machine Learning (ML).
First, let us set up some notation:

Object Definition

xt ∈ RN vector of N features
yt ∈ {0, 1} binary classification label
{xt , yt}t∈[M] training set
ci (xt) = ± 1

N value of weak classifier i on event t
q := (q1, . . . , qN) vector of binary weights associated with each weak classifier
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QBoost

The classification error for sample t is given by the square error(
N∑
i=1

ci (xt)qi − yt

)2

. (3.1)
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 32 / 57



QBoost

The total cost function to minimize is the sum of squared errors across the
training data:

L(s) =
M∑
t=1

(
N∑
i=1

ci (xt)si − yt

)2

(3.2)

Expanding yields a term y2
t that does not depend on s and does not influence the

minimization of L (can be absorbed as a constant energy shift).
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QBoost

Overfitting can be done by adding a penalty λ > 0. The objective to minimize in
the QBoost agorithm is:

L̃(s) =
M∑
t=1

 N∑
i=1

ci (xt)qi

N∑
j=1

cj(xt)sj − 2yt

N∑
i=1

ci (xt)si

+ λ

N∑
i=1

si (3.3)

=
N∑
i=1

N∑
j=1

Cijqiqj +
N∑
i=1

(λ− 2Ci )si , (3.4)
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QBoost

Cij :=
M∑
t=1

ci (xt)cj(xt), Ci :=
M∑
i=1

ci (xt)yt .

Remark: the penalty term added here is analogous to LASSO regression method
with L1 penalty. Note that ridge regression with L2 penalty could be chosen
instead.
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QBoost

Next, we need to map the problem to an Ising model. Consider σ to be spin
variables by defining

σ = 2s − 1 (3.5)

The Ising Hamiltonian is then written as:

H =
1

4

N∑
i ,j=1

Cijσiσj +
1

2

N∑
i ,j=1

Ciσi +
N∑
i=1

(λ′ − Ci )σi , (3.6)

(λ′ := 1
2λ is a rescaled penalty coefficient)
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QBoost

QA aims to solve the problem to minimize H and compute the ground state spin
configuration bit-string |s〉, with s ∈ {−1, 1}N .

For each new sample x , the classifier is given as

R(x) =
N∑
i=1

sici (x) ∈ [−1, 1]. (3.7)
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QBoost: Application

QA for ML applications has been gaining a lot of popularity (and serves as a
business model for a number of quantum computing startups).

It is claimed to have demonstrated performance advantage in compaerison with
algorithms such as binary decision tree-based Extreme Gradient Boosting
(XGBoost) and DNN classifiers on small datasets.
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QBoost: Application

A very interesting application is that of forecasting credit card client defaults. For
that one can utilize a publicly available dataset available from the UCI Machine
Learning Repository. This dataset consists of 30,000 samples with binary
classifications:

a client does not default - class 0

a client does default - class 1
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QBoost: Application
N = 23 features (F1, . . . ,F23) available:

F1: amount of given credit (continuous)

F2: gender (binary)

F3: education (discrete)

F4: marital status (discrete)

F5: age (discrete)

F6: repayment status of previous month (discrete)

F7: repayment status of two months ago (discrete)

F8-F11: similar (discrete)

F12: bill amount past month (continuous)

F13: bill amount two months ago (continuous)

F14-F17: similar (continuous)

F18: amount of previous month payment (continuous)

F19: amount of payment two months ago (continuous)

F20-F23: similar (continuous)
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QBoost: Application Results

Accuracy Precision Recall

GradBoost 0.83 0.69 0.35
MLP 0.83 0.69 0.35

QBoost 0.83 0.71 0.33

It has be argued that QBoost provides an improvement on such approaches by
finding an optimal configuration of the weak classifiers.
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Break

Questions?
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WS-QAOA

Quantum Approximate Optimization Algorithm (QAOA) encodes a combinatorial
optimization problem in a Hamiltonian HC whose ground state is the optimum
solution.

QAOA first creates an initial state which is the ground state of a mixer
Hamiltonian HM where a common choice is

HM = −
N∑
i=1

σxi , (4.1)

with ground state being |+〉⊗n.
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WS-QAOA

Then, recall, for depth-L QAOA, we apply L times the unitary
UQAOA = UC (γ)UB(β) defined as:

UC (γ) := e−ıγHC (4.2)

UB(β) := e−ıβHM . (4.3)

The result is:

UQAOA |+〉⊗n = |γ, β〉 . (4.4)

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to
create a trial state which minimizes the energy of the problem Hamiltonian HC .
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WS-QAOA

. . . |γ, β⟩|+⟩n UC(γL) UB(βL) U1(γ) U1(β) ML

Layer L Layer 1 Observable
. . .

(Typo: instead of UC (γL)UB(βL) it should read instead UL(γL)UL(βL))
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WS-QAOA

While very promising algorithm,

initially it lacked theoretical guarantees on its performance ratio and for certain
problem instances of interest (e.g. Max-Cut) it cannot, for constant L, outperform
the classical Goemans-Williamson randomized rounding approximation.

While several improvements of the QAOA have been developed in the literature,
we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).
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WS-QAOA

For Max-Cut it finds cuts whose expected value is an α fraction of the global
optimum, for 0.87856 < α < 0.87857, with the expectation over the

randomization in the rounding procedure)

Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 47 / 57



WS-QAOA

While very promising algorithm,

initially it lacked theoretical guarantees on its performance ratio and for certain
problem instances of interest.

While several improvements of the QAOA have been developed in the literature,
we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).
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WS-QAOA
Relaxations

QUBOs have already been discussed a lot. A common formulation is:

min
x∈{0,1}n

xTQx + µT x . (4.5)

where x is a vector of n binary decision variables, Q ∈ Rn×n a symmetric matrix,
and µ ∈ Rn a vector.

Since for binary variables x2
i = xi , µ can be added to the diagonal of Σ, so add µ

bcz it simplifies the notation.

Note that practically any mixed-integer linear program (MILP) can be encoded in
a QUBO it is automatically NP-Hard.
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WS-QAOA

If Q is positive semidefinite, there exists a trivial continuous relaxation of the
QUBO above:

min
x∈[0,1]n

xTQx (4.6)

is a convex quadratic program and the optimal solution c∗ of the continuous
relaxation is easily obtainable with classical optimizers.
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WS-QAOA

The solutions of continuous-valued relaxation discussed above can be used to
initialize VQAs: this is known as warm-starting.

Let us focus on how to warm-start the QAOA of Fahri et. al.
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WS-QAOA

In QAOA, each decision variable xi of the discrete optimization problem
corresponds to a qubit by the substitution xi = (1− si ) /2. Each si is replaced by
a spin operator σi to transform the cost function to a cost Hamiltonian HC .

After utilizing the unitary UQAOA, one performs the final measurement: a
randomized rounding.Warm-starting amounts to replacing the initial equal
superposition state |+〉⊗n with a state

|φ∗〉 =
n−1⊗
i=0

R̂y (θi ) |0〉n (4.7)

which corresponds to the solution c∗ of the relaxed Problem (4.6).
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WS-QAOA
Here, R̂y (θi ) is a θi -parametrized rotation around the y -axis of the qubit and
θi := 2 arcsin(

√
c∗i ) for c∗i given as the solution of QUBO (4.6).
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WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer
Hamiltonian is

Hws
M =

n∑
i=1

Hws
M,i (4.8)

where

Hws
M,i =

(
2c∗i − 1 −2

√
c∗i (1− c∗i )

−2
√

c∗i (1− c∗i ) 1− 2c∗i

)
(4.9)

which has Ry (θi ) |0〉 as ground state.One can show that the ground state of Hws
M

is |φ∗〉 with energy −n. Therefore, WS-QAOA applies at layer k a mixing gate
which is given by the time-evolved mixing Hamiltonian UM(β) = e−ıβH

ws
M .
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Aspman/Korpas/Mareček (CTU) Quantum Computing May 18, 2023 54 / 57



WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer
Hamiltonian is

Hws
M =

n∑
i=1

Hws
M,i (4.8)

where

Hws
M,i =

(
2c∗i − 1 −2

√
c∗i (1− c∗i )

−2
√

c∗i (1− c∗i ) 1− 2c∗i

)
(4.9)

which has Ry (θi ) |0〉 as ground state.One can show that the ground state of Hws
M

is |φ∗〉 with energy −n. Therefore, WS-QAOA applies at layer k a mixing gate
which is given by the time-evolved mixing Hamiltonian UM(β) = e−ıβH

ws
M .
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WS-QAOA

For technical reasons one has to actually modify the definition of θi as

θi = 2 arcsin
(√

c∗i
)

if c∗i ∈ [ε, 1− ε]
θi = 2 arcsin(

√
ε) if c∗i ≤ ε

θi = 2 arcsin(
√

1− ε) if c∗i ≥ 1− ε.

where ε ∈ [0, 0.5] and the mixer Hamiltonian HM is adjusted accordingly.

The parameter ε provides a continuous mapping between WS-QAOA and
standard QAOA since at ε = 0.5 the initial state is the equal superposition state
and the mixer Hamiltonian is the X operator.

If all c∗i ∈ (0, 1) or ε > 0, WS-QAOA converges to the optimal solution of
(QUBO) as the depth L approaches infinity as does standard QAOA.
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WS-QAOA

For large enough L, WS-QAOA the adiabatic evolution transforming the ground
state of the mixer into the ground state of ĤC as expected. The speed of the
adiabatic evolution is limited by the spectral gap of the intermediate Hamiltonians
as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution
(larger terminal time T ) implies a larger L. The idea of WS-QAOA is to speed-up
this evolution by optimizing the parameters instead of following a fixed annealing
schedule.
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WS-QAOA
Below we quote a nice experimental demonstration from Egger et. al.:
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