
Lecture Topic: Harmonic Analysis 101
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Harmonic Analysis as we Need it

Harmonic analysis as we need it requires

discrete samples

finite fields

complex probability amplitudes on the input and output.

The corresponding, perhaps seemingly obscure parts of harmonic analysis have
also led to classical breakthroughs, such as multiplication of n-bit integers in time
O(n log n) and multiplication of polynomials over finite fields in the same time.
The idea is that we can think of the Fourier transform in a very general way as a
function on a group or over a finite field. The only difference between things like
the full continuous Fourier transform, the discrete-time Fourier transform and the
discrete Fourier transform are then simply the choice of group.
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Discrete Fourier Transform

The discrete Fourier transform (DFT) maps an N-vector x of complex numbers to
an N-vector X of complex numbers:

Xk =
N−1∑
j=0

xj · e
2πjki
N , (1.1)

up to a normalization 1√
N

. (This is sometimes called the analysis formula.) Let us

assume N = 2n throughout, where n is a constant.
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via Discretisation

One way to think of the N-vector x is to see those as samples of a periodic
function with period T , i.e., f (t) = f (t + T ). In particular, one would sample f
uniformly at points j∆t, where ∆T = T/N and j = 0, 1, ...,N − 1.
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Cyclic groups

Alternatively, one could see discrete Fourier transform as a function on a finite
cyclic group Gq = {1, g , g2, . . . , gq−1} ∼= Z/qZ. A simple representation of the

elements of this group is as qth roots of unity, gn = exp
(

2πin
q

)
, with

n = 0, . . . , q − 1, where the group multiplication is simply ordinary complex
multiplication. By visualizing this group action on the unit circle we can see that
it is the rotational symmetry group of the q-polygon.

For any group G , and especially for cyclic groups Zq, it may be tempting to
identify the group with its elements g ∈ G and consider f (g) only, or to identify
the cyclic groups Zq with the set {0, . . . , q − 1} and modulo q addition. One
could do much better, however, if one considers the group’s symmetries.
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Discrete Fourier Transform

Alternatively, one could see the analysis formula as a matrix equation X = Fx.
Thus, a discrete Fourier transform can be expressed as a so-called Vandermonde
matrix (Sylvester, 1867),

F =
1√
N


ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 (1.2)

where ωm·n
N = e−i2πmn/N and the mn is the usual product of the integers.
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Discrete Fourier Transform

Notice that:

because ω depends only on the product of frequency m, and position n, the
DFT F is symmetric. Notice that it is also unitary: F−1 = F∗ and
|det(F)| = 1.

X is the inner product of x with the m-th row of F. Conversely, f is a linear
combination of the columns of F, where the mth column is weighted by Xm.

the vectors um =
[
e

i2πmn
N

∣∣∣ n = 0, 1, . . . ,N − 1
]T

form an orthogonal basis

over the set of N-dimensional complex vectors.

F2 reverses the input, while F4 = I. The eigenvalues satisfy: λ4 = 1 and thus
are the fourth roots of unity: +1,−1,+i , or − i .

Aspman/Korpas/Mareček (CTU) Quantum Computing April 19, 2023 8 / 29



The Hadamard Transform
We can define the 1× 1 Hadamard transform H0 = 1 as the identity, and then
define Hm for m > 0 by:

Hm =
1√
2

[
Hm−1 Hm−1

Hm−1 −Hm−1

]
.

Other than the normalization, the Hadamard matrices are made up of 1 and -1.

Notice that Hadamard

H1 =
1√
2

[
1 1
1 −1

]
is a discrete Fourier transform; indeed, we have ω0·0

1 = ω0·1
1 = ω1·0

1 = e0 = +1
and ω1·1

1 = e−iπ = −1. As a further example, the next Hadamard matrix is

H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
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The z-Transform

If you know the z-transform, notice that the Xk can also be seen as evaluation of
the z-transform X (z) =

∑N−1
j=0 xjz

−j at points ω−jN , i.e., Xj = X (z)
z=ω−j

N
.
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The Discrete Fourier Transform for N = 1, 2, 3

Let us see:
F0 = H0 = 1

F1 = H1 =
1√
2

[
1 1
1 −1

]

F2 =
1√
3

1 1 1
1 ω1·1

3 ω1·2
3

1 ω2·1
3 ω2·2

3


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The Discrete Fourier Transform for N = 4

While the omega notation may obscure the nature of the DFT, see that the
column correspond to passes along the unit circle, clockwise, expressed in the
corresponding complex number (e.g., 1, −i , −1, i for F3) at varying frequency
(e.g., 0, 1, 2, 3 for F3):

F3 =
1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

.

Im

Re

z = |z|eiθ

1−1

−i

i

θ
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Exercise 1

Exercise

Visualise F3, F4 on the unit circle.
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The Discrete Fourier Transform for N = 4

Let us further consider some simple examples:

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
1
1
1

 =


2
0
0
0

 (1.3)
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The Discrete Fourier Transform for N = 4

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
−i
−1
i

 =


0
0
0
2

 (1.4)
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The Discrete Fourier Transform for N = 4

1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




0
1
0
1

 =


1
0
−1
0

 (1.5)

Aspman/Korpas/Mareček (CTU) Quantum Computing April 19, 2023 16 / 29



Fast Fourier Transform

A straightforward implementation of DFT as a matrix-vector product requires
O(N2) operations. In the so-called fast Fourier transform (Cooley and Tukey,
1965), one requires only O(N log2 N) = O(2nn) operations. There are a number
of variants, all based on the divide-and-conquer approach. As we assume N = 2n,
we will present a variant known as the radix-2 decimation in time (DIT) algorithm.
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Fast Fourier Transform
This speedup is achieved by this variant of the divide-and-conquer approach,
where we consider subsets of the initial sequence, take the DFT of these
subsequences, and reconstruct the DFT of the original sequence from the results
on the subsequences. One option is based on the following insight:

Xk =
1√
N

N−1∑
j=0

xj · e
2πjki
N (2.1)

=
1√
N

∑
even j

xj · e
2πjki
N +

∑
odd j

xj · e
2π(j−1)ki

N

 (2.2)

=
1√
2

 1√
N/2

∑
even j

xj · e
2π(j/2)ki

N/2

+

 1√
N/2

∑
odd j

xj · e
2π(j−1)/2ki

N/2

 (2.3)

The divide-and-conquer approach can be illustrated on N = 16 with the following
cartoon.
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The Discrete Fourier Transform for N = 16

x0

x1
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4
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The z-Transform

If you know the z-transform, you should see that
X (z) =

∑N−1
j=0 xjz

−j =
∑r−1

l=0

∑
j∈Il

xjz
−j for some partition I of {0, 1, . . . ,N − 1}

into r subsets, and that one can also normalise the terms. This way, one can
define a variety of recursions similar to the one above, as long as the subset are
chosen to be similar to the initial sequence in terms of their periodicity.
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Fast Fourier Transform as a Factorization
Alternatively, one could see the Fast Fourier Transform as a certain matrix
factorization. This is both important to understand FFT, but also to understand
the QFT later. In particular, the 2n × 2n DFT matrix Fn can be factored as:

F = PnA
(0)
n A

(1)
n · · ·A(n−1)

n , (2.4)

where,

Pn is some permutation matrix

A
(k)
n = In−k−1 ⊗ Bk+1,

Bk+1 = 1√
2

[
Ik Ik
Ωk −Ωk

]
with Ik the k × k identity matrix

Ωk := Ω2k is a 2k × 2k diagonal matrix:

Ω2k :=


ω0

2k+1

ω1
2k+1

. . .

ω2k−1
2k+1

 , (2.5)

where ω2k+1 is e
−2πi

2k+1 as before.
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Quantum Fourier Transform

In general, F is an N × N unitary matrix, and thus we can implement it on a
quantum computer as an n-qubit unitary for N = 2n. As such, it maps an
N-dimensional vector of amplitudes to an N-dimensional vector of amplitudes.
This is called the quantum Fourier transform (QFT).

Shor, Kitaev presented the first polynomial, O(n2) quantum algorithms for QFT
over certain finite fields and arbitrary finite Abelian groups, respectively. This is
exponentially faster than the classical fast Fourier transform, which takes
O(N logN) steps.
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Quantum Fourier Transform

Recall that the DFT is:

Xk =
1√
N

N−1∑
j=0

xj · e
2πjki
N .

In contrast, the QFT on an orthonormal basis |0〉 , |1〉 , . . . , |N − 1〉 is a linear
operator:

|j〉 → 1√
N

N−1∑
k=0

e
2πjki
N |k〉 .
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Quantum Fourier Transform

An alternative representation of the QFT utilizes the product form:

|j1, j2, . . . , jn〉 →
(
|0〉+ e2πi 0.jn |1〉

) (
|0〉+ e2πi 0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi 0.j1j2···jn |1〉

)
2n/2

,

where |j1, j2, . . . , jn〉 is a binary representation of a basis state j and 0.j1j2 · · · jn is
a notation for binary fraction j1/2 + j2/4 · · · jn/2n+1. This is actually easy enough
to derive:
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Derivation of the QFT

|j〉 → 1√
N

N−1∑
k=0

xj · e
2πjki
N |k〉 (3.1)

1

2n/2

2n−1∑
k=0

e
2πjki

2n |k〉 (3.2)

1

2n/2

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

e2πj(
∑n

l=1 kl2
−l )i |k1k2 . . . kn〉 (3.3)

1

2n/2

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

n⊗
l=1

e2πjkl2
−l i |kl〉 (3.4)

1

2n/2

n⊗
l=1

 1∑
kl=0

e2πjkl2
−l i |kl〉

 (3.5)

1

2n/2

n⊗
l=1

[
|0〉+ e2πj2−l i |1〉

]
(3.6)
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Quantum Circuit for QFT

A simplistic illustration of the quantum circuit for QFT, omitting swaps at the
end and normalization:

· · ·

· · · · · ·

· · · · · · ...

. ...
...

...

· · · · · · · · ·

· · · · · · · · ·

|j〉

H R2 R3 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Let us consider the workings of the circuit step by step. The key to its
understanding is the phase kickback, which we have seen earlier.
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Working of the QFT
Applying the Hadamard gate to the first qubit of the input state |j1 . . . jn〉 gives

1

21/2

(
|0〉+ e2πi 0.j1 |1〉

)
|j2 . . . jn〉 (3.7)

since e2πi 0.j1 equals +1 when j1 = 0 and equals −1 when j1 = 1.
We define a unitary gate Rk as

Rk =

(
1 0

0 e2πi/2k

)
(3.8)

The controlled-R2 gate applied on the first qubit, conditional on j2, now gives

1

21/2

(
|0〉+ e2πi 0.j1j2 |1〉

)
|j2 . . . jn〉 (3.9)

Applying further the controlled-R3, R4 ... Rn gates, conditional on j3, j4 etc., we
get

1

21/2

(
|0〉+ e2πi 0.j1j2...jn |1〉

)
|j2 . . . jn〉 (3.10)
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Working of the QFT
Next we perform a similar procedure onto the second qubit. The Hadamard gate
produces the state

1

22/2

(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2 |1〉

)
|j3 . . . jn〉 (3.11)

and the controlled-R2 through Rn−1 gates yield the state

1

22/2

(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2...jn |1〉

)
|j3 . . . jn〉 (3.12)

We continue this procedure for each qubit, obtaining a final state

1

2n/2

(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2...jn |1〉

)
. . .
(
|0〉+ e2πi 0.jn |1〉

)
(3.13)

Eventually, we use the SWAP operations to reverse the order of the qubits to
obtain the state in the desired product form

1

2n/2

(
|0〉+ e2πi 0.jn |1〉

) (
|0〉+ e2πi 0.jn−1jn |1〉

)
. . .
(
|0〉+ e2πi 0.j1j2...jn |1〉

)
(3.14)
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Approximate Quantum Circuits for QFT

Above, we have clearly used at most O(n2) gates.

Cleve and Watrous, Hales and Hallgren, and others improved this to O(n log n)
depth, if one allows for some error. This is based on the realization that Rs for
s � log n are very close to the identity and can be omitted.
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