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Input, Compute, Output

Antoine de Saint-Exupéry has provided an excellent illustration of a quantum
algorithm (cca. 1943):
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Input, Compute, Output

Quantum algorithms ideally have only a modest amount of input. Typically, one
uses an initial state with only a single complex probability amplitude, whose
magnitude squares is 1. We can assume without loss of regularity that this
corresponds to the basis state of all zeros.

Often, people assume that the input is “magically made available” via oracles –
but that is often “magical thinking”.

Often, one loads the input via controlled rotations, one scalar at a time.
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Aspman/Korpas/Mareček (CTU) Quantum Computing March 31, 2023 3 / 34



Input, Compute, Output

Quantum algorithms ideally have only a modest amount of input. Typically, one
uses an initial state with only a single complex probability amplitude, whose
magnitude squares is 1. We can assume without loss of regularity that this
corresponds to the basis state of all zeros.

Often, people assume that the input is “magically made available” via oracles –
but that is often “magical thinking”.

Often, one loads the input via controlled rotations, one scalar at a time.
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Input, Compute, Output

Quantum algorithms then construct a maximally-entangled state on q qubits,
whose representation requires a 2q complex probability amplitudes. (In order for
the state to be maximally entangled, the complex probability amplitudes have to
be equal.) One can see the large entangled state as a root of a large tree, where
in the leaves, one applies Hadamard gates to individual qubits, and in the non-leaf
nodes, one applies CNOT. Then, applying a single-qubit gate may change all
exponentially-many complex probability amplitudes in parallel, at a unit cost in
terms of the depth of the quantum circuit.
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Input, Compute, Output

Finally, the output needs to be very simple.

Clearly, the measurement ends up with a basis state, depending on the
corresponding complex probability amplitude. In some sense, one may wish the
output were only a single complex probability amplitude whose magnitude squares
is 1.

This is to be seen from the sample complexity of parameter estimation in
multivariate distributions: if we expect a non-trivial superposition on the output,
we will need very many copies of the circuit and very many collapsing
measurements to estimate the output state.

Often, one employs some classical post-processing.
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Functional Problems

In the definition of Aaronson et al.:

FBPP, resp. FQPP is the class of polynomially-bounded relations
R ⊆ {0, 1}∗ × {0, 1}∗ for which there exists a polynomial-time randomized, resp.
quantum algorithm A such that for all x for which there exists a y with (x , y) ∈ R
and all ε > 0,

P[(x ,A(x , 01/ε)) ∈ R] > 1− ε,

where the probability is over A’s outputs.
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Functional Problems with Advice

In the definition of Aaronson et al.:

FP/rpoly, resp. FBQP/qpoly is the class of polynomially-bounded relations
R ⊆ {0, 1}∗ × {0, 1}∗ for which there exists a polynomial-time deterministic
classical algorithm A, resp. a polynomial-time quantum algorithm Q, a polynomial
p(n,m), and an infinite list of advice distributions {Dn,m}n,m≥1, where Dn,m is
supported on

(
p(n,m)

)
, resp. advice states {|ψn,m〉}n,m≥1, where |ψn,m〉 is on

p(n,m) qubits, such that for all x for which there exists a y such that (x , y) ∈ R
and all m,

Pr∼Dn,m [(x ,A(x , 0m, r)) ∈ R] > 1− 1

m
,

resp.

P[(x ,Q(x , 0m, |ψn,m〉)) ∈ R] > 1− 1

m
.
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Quantum Random Oracle Model

If you rely on your circuit calling an oracle, you often typically cannot prove any
“usual” separation between complexity classes, e.g., BPP 6= BQP. You can prove
only weaker “relativized” results, known as “oracle separations”.

The strongest results consider unstructured, random oracles. In the
classical/quantum random oracle model of Boneh et al., a random function H is
chosen at the beginning, anyone can classically/quantumly access H, i.e., apply a
unitary |x〉 |y〉 7→ |x〉 |y ⊕ H(x)〉.
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Quantum Random Oracle Model

Bennett et al. show that relative to an oracle chosen uniformly at random with
probability 1 an NP-Complete problem cannot be solved on a quantum Turing
machine (QTM) in time o(2n/2).

Yamakawa and Zhandry show that relative to a random oracle with probability 1,
there are NP search problems solvable by BQP machines but not BPP machines.
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Decision Problems

From the point of view of Theoretical Computer Science, the situation in decision
problems is somewhat dire:

We do not know any non-relativized separation between P, BPP, and BQP.

(Notice that with non-linear quantum mechanics, we could actually solve
NP-Complete and #P-Complete problems.)
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Functional Problems

In functional problems, the situation is somewhat better.

In February 2023 Aaronson et al. have shown FP 6= FBPP, unconditionally, and
FBQP/qpoly 6= FBQP/poly.

Notice that the FBQP/qpoly refers to a quantum advice, not to an oracle.
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Deutsch–Jozsa Problem

In the so-called Deutsch–Jozsa problem, we have

a dimension n

a black-box function f (x) : {0, 1}n → {0, 1} that has a rather unusual
property: either it is a constant function (there is y ∈ {0, 1} such that for all
x ∈ {0, 1}n, the output is y) or balanced (for precisely 2n−1 inputs, the
output is 0, and for precisely 2n−1 inputs, the output is 1)

The decision version of the problem asks whether the unknown function f is
constant. It is clear that classically, one may need to perform 2n−1 + 1 oracle calls
in the worst-case, but that there would be excellent randomized algorithms.
Notice that for n = 1, one asks whether f (0) + f (1) mod 2 is zero.
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Deutsch–Jozsa Algorithm
Let us illustrate the algorithm of David Deutsch for n = 1:

1 creates an initial, two-register state |0〉 |1〉
2 apply Hadamard transform to both registers: 1

2

∑1
x=0 |x〉 (|0〉 − |1〉)

3 apply the function via the oracle to obtain
1
2

∑1
x=0 |x〉 (|0⊕ f (x)〉 − |1⊕ f (x)〉)

4 apply the Hadamard transform on the first register again:

1

2

1∑
x=0

(−1)f (x)

 1√
2

1∑
y=0

(−1)x⊕y |y〉

 =
1∑

y=0

[
1

2

1∑
x=0

(−1)f (x)(−1)x⊕y

]
|y〉

5 obtain y by measuring the first register. The probability of measuring |0〉 is∣∣∣1
2

∑1
x=0(−1)f (x)

∣∣∣2, which evaluates to which evaluates to 1 for constant

functions (constructive interference) and to 0 for balanced functions
(destructive interference).

We have used 1 query to the oracle. This can be generalized to any n, without
increasing the number of queries!Aspman/Korpas/Mareček (CTU) Quantum Computing March 31, 2023 13 / 34



Deutsch–Jozsa Algorithm Explained

If the algorithm seems hard to parse, do not despair. There are a few insights that
will help us elucidate its workings:

the Boolean group

the oracle

the Hadamard transform

amplitude amplification.

We will also introduce the phase kickback, which we will need later.

Aspman/Korpas/Mareček (CTU) Quantum Computing March 31, 2023 14 / 34



Artihmetics modulo 2

First, let us consider the artihmetics modulo 2 and its relationship to the XOR
operation (⊕, “must have one or the other but not both”).

In n = 1 we have seen

(0 + 1) mod 2 = 1 mod 2 = 1 = (0⊕ 1) and

(1 + 1) mod 2 = 2 mod 2 = 0 = (1⊕ 1).

Beyond n = 1 the binary inner product � of bitvectors x , y ∈ {0, 1}n is
x1y1 + · · ·+ xnyn mod 2 = x1y1 ⊕ · · · ⊕ xnyn, i.e., essentially counting ones that
appear at the corresponding positions in two bitstrings, modulo 2, and thus
suggesting whether the count is odd or even.
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The Oracle

Next, let us consider the oracle. One assumes that for a function f , there is an
oracle Uf that maps |x〉 |y〉 → |x〉 |y ⊕ f (x)〉, where ⊕ denotes the XOR
operation (or addition modulo 2). This can be simplified to Uf |x〉 = (−1)f (x) |x〉.
Clearly, |x〉 |0〉 → |x〉 |f (x)〉.
Either way, this is a reversible operation and can be implemented in a unitary.
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The Oracle

In the case of Boolean function f on n = 1 bits, one can think of this as a CNOT
gate controlled by the value of f (x). In the top-left corner, you have I (the
identity) for f (0) = 0 and σx (flip) for f (0) = 1. Similarly in the bottom-right
corner, you have I (the identity) for f (1) = 0 and σx (flip) for f (1) = 1.

Uf =


1− f (0) f (0) 0 0
f (0) 1− f (0) 0 0

0 0 1− f (1) f (1)
0 0 f (1) 1− f (1)


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Amplitude Amplification

In a way, the Deutsch–Jozsa algorithm also demonstrates the significance of
allowing quantum amplitudes to take both positive and negative values.

In the Qiskit Textbook and many other sources, this is illustrated starting with an
interference experiment (cf. Young’s double-slit interferometer, 1803): a particle
can travel from the source to an array of detectors through two slits. Each
detector has a probability of observing a particle that depends on the phases of the
incoming waves. Same phases increase the probability (constructive interference);
very different phases reduce the probability (destructive interference).

One can consider 2n possible paths x and 2n possible detectors y , both labelled by
bitstrings. The phase accumulated at detector x along a path y equals
C (−1)f (x)+x ·y , where x · y is the binary inner product and C is a normalizing
constant.

The probability of a particle at detector y is P(y) = |C
∑

x(−1)f (x)+x ·y |2 with
C = 2−n.
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Amplitude Amplification

Now let us consider the probability of observing an all-zero string y , which is

|2−n
∑
x

(−1)f (x)+x ·y |2 = |2−n
∑
x

(−1)f (x)+0|2,

in the two cases of the promise problem:

if the f (x) = c , then the probability is |2−n
∑

x(−1)c |2 = 1

if the f (x) is balanced, then the probability is zero |2−n
∑

x(−1)f (x)|2 = 0,
because the alternating sign will lead to a cancellation of the terms.
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Exercise 1

Exercise

Plot a diagram of the double-slit experiment and the 2n detectors and the
inference pattern for some n ≥ 8.
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The Hadamard Transform

We have seen the Hadamard gate:

H(|0〉) =
1√
2
|0〉+

1√
2
|1〉 =: |+〉 (5.1)

H(|1〉) =
1√
2
|0〉 − 1√

2
|1〉 =: |−〉 (5.2)

H(|+〉) = H

(
1√
2
|0〉+

1√
2
|1〉
)

=
1

2

(
|0〉+ |1〉

)
+

1

2

(
|0〉 − |1〉

)
= |0〉 (5.3)

H(|−〉) = H

(
1√
2
|0〉 − 1√

2
|1〉
)

=
1

2

(
|0〉+ |1〉

)
− 1

2

(
|0〉 − |1〉

)
= |1〉 (5.4)

without really understanding it.
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The Hadamard Transform

First, notice that for an n-qubit state |k〉, the application of Hadamards
qubit-wise yields:

H⊗n |k〉 =
1√
2n

2n−1∑
j=0

(−1)k�j |j〉 ,

where j � k = j1k1 ⊕ j2k2 ⊕ · · · ⊕ jnkn and ⊕ is XOR as above.

Second, this is rooted in a non-trivial fact that the Hadamard transform is the
Fourier transform on the Boolean group (Z/2Z)n.
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The Hadamard Transform in Deutsch–Jozsa

In the example of the second application of Hadamard in Deutsch–Jozsa for
n = 1, we obtain:

1

2

1∑
x=0

(−1)f (x)

 1√
2

1∑
y=0

(−1)x⊕y |y〉

 =
1∑

y=0

[
1

2

1∑
x=0

(−1)f (x)(−1)x⊕y

]
|y〉 .

More broadly, the Hadamard maps |x〉 to 2−n/2
∑

y (−1)x�y |y〉. For our state

2−n/2
∑

x(−1)f (x) |x〉, this will amount to 2−n
∑

x(−1)f (x)+x�y |y〉, just as in the
interference experiment.
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Exercise 2

Exercise

Write down the Hadamard gate on n = 3.
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Phase Kickback

In the previous chapter, we have seen the phase factor (“global phase”, “global
gauge”), whereby quantum states |ψ〉 and e iα |ψ〉 are indistinguishable by
measurement with any linear operator φ in the sense of
| 〈φ〉ψ|2 = |e iα 〈φ〉ψ|2 = | 〈φ〉ψ|2.

(A phase-shift gate P(α) = e iαI multiplies any state by a global phase α.)

If we apply a control-U gate to |ψ〉, where |ψ〉 is an eigenstate of U, then

|ψ〉 is unchanged

the phase |0〉〈0|+ e iα|1〉〈1| is transferred to the input state |ψ〉 of the
control qubit.
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Phase Kickback

Let us see the phase kickback in action. Let us consider a single-qubit gate U and
its eigenstate |ψ〉:

U |ψ〉 = e iφ |ψ〉 .

We wish to estimate φ up to the period (2π). This is possible with an extra
(“ancilla”) qubit, one Hadamard gate on the ancilla qubit, and a CNOT gate.
Notably, after applying the CNOT controlled by the ancilla qubit, the phase of the
ancilla will be φ:

XH ⊗ I |0〉 |ψ〉 =
|0〉+ e iφ |1〉√

2
|ψ〉 ,

where we have used the fact that CNOT = [I0; 0X ].
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Phase Kickback

In the two-qubit Deutsch algorithm above, the first qubit acts as an ancilla qubit,
and the controlled qubit is in the eigenstate of the NOT gate with eigenvalue -1.
φ = π. Thus, we get 1√

2
|0〉+ (−1)f (0)⊕f (1) |1〉. The phase kick-back is either 0 or

π, which can be distinguished by measuring σx , or by applying Hadamard gate
again and then measuring in the computational basis.

This will be important in the following discussion of Simon’s algorithm.
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First Oracle Sepration

Let us illustrate the first, historically, and most commonly taught “oracle
separation” between BPP and BQP on Simon’s problem. This is not a problem,
which would be useful on its own, more akin a “guessing game”. It uses a highly
structured, “periodic” oracle. We will see, however, that the crucial concept of
“period finding” underlies the famous Shor factoring algorithm. (Daniel Simon
actually recalls1 that Shor developed his factoring algorithm having seen a preprint
of his.)

1https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
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Simon’s Problem
In the so-called Simon’s problem, we have

a dimension n

a black-box function f (x) : {0, 1}n → {0, 1}n that has a rather unusual
property: for all x , y ∈ {0, 1}n, f (x) = f (y) if any only if x ⊕ y ∈ {0n, s} for
some unknown secret s ∈ {0, 1}n,

where ⊕ denotes the elementwise XOR operation. Notice that x ⊕ y = 0n, if and
only if a = b. Thus,

either the secret is s = 0n and the function is a bijection (“one-to-one”,
invertible)

or the secret is s 6= 0n and the function is not a bijection, but rather
“two-to-one”.

The decision version of the problem asks whether the unknown function f is a
bijection (and thus whether s = 0n).

Aspman/Korpas/Mareček (CTU) Quantum Computing March 31, 2023 29 / 34



Exercise 3

Exercise

To get a feel for this, pick an f (x) : {0, 1}3 → {0, 1}3. Ask your neighbour to
guess whether it’s a bijection. How many queries did he need?
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Simon’s Problem

Notice that there is no input. Hence, it is impossible to reason about the
description complexity of the input.

Let us measure the complexity of (a classical or quantum algorithm) by the
number of evaluations of f at distinct values (x) it requires. (This is also known
as the number of oracle queries or oracle complexity.)

In a deterministic Turing machine, one may try 2n inputs one by one until one
obtains two inputs producing the same output, or decides that no two match.

In a probabilistic machine, one may try to sample the 2n inputs randomly, and as
long as no two match, suggest that the function is a bijection, with an ever higher
probability.
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Aspman/Korpas/Mareček (CTU) Quantum Computing March 31, 2023 31 / 34



Simon’s Problem

Notice that there is no input. Hence, it is impossible to reason about the
description complexity of the input.

Let us measure the complexity of (a classical or quantum algorithm) by the
number of evaluations of f at distinct values (x) it requires. (This is also known
as the number of oracle queries or oracle complexity.)

In a deterministic Turing machine, one may try 2n inputs one by one until one
obtains two inputs producing the same output, or decides that no two match.

In a probabilistic machine, one may try to sample the 2n inputs randomly, and as
long as no two match, suggest that the function is a bijection, with an ever higher
probability.
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Simon’s Algorithm
The quantum algorithm for solving the problem is similar to the randomized
algorithm. Repeatedly, for each sample, we perform the following steps:

1 creates an initial, two-register state |0〉⊗n|0〉⊗n
2 apply Hadamard transform on the first register: 1√

2n

∑2n−1
k=0 |k〉|0〉⊗n

3 apply the function via the oracle to obtain 1√
2n

∑2n−1
k=0 |k〉|f (k)〉

4 apply the Hadamard transform on the first register again:

1√
2n

2n−1∑
k=0

 1√
2n

2n−1∑
j=0

(−1)j�k |j〉

 |f (k)〉 =
2n−1∑
j=0

|j〉

[
1

2n

2n−1∑
k=0

(−1)j�k |f (k)〉

]
5 obtain y by measuring the first register. The probability of measuring |j〉 is∣∣∣ 1

2n
∑2n−1

k=0 (−1)j�k |f (k)〉
∣∣∣2.

Then, we classically solve a system of equations given by the samples to obtain s.
(Each sample satisfies ys = 0.) If s = 0n, return YES.
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Shor’s Factoring
Shor’s factoring algorihm uses a non-trivial initial preprocessing, but then we
perform the following steps:

1 creates an initial, Q-qubit state |0〉⊗Q
2 apply Hadamard transform on it: 1√

Q

∑Q−1
k=0 |x〉

3 apply the function f (x) = ax modN using Uf |x , 0n〉 = |x , f (x)〉 to obtain

Uf
1√
Q

Q−1∑
x=0

|x , 0n〉 =
1√
Q

Q−1∑
x=0

|x , f (x)〉

such that the value we are looking for is in the phase of
4 apply the quantum Fourier transform: 1

Q

∑Q−1
x=0

∑Q−1
y=0 ω

xy |y , f (x)〉
5 obtain y by measuring the first register. The probability of measuring |y , z〉 is

1

Q2

sin2(πmry
Q )

sin2(πryQ )
.

Then, we apply classical post-processing.
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Repetitive?

If you felt that there is common pattern across these algorithms, you are right.
The quantum Fourier transform is, in some sense, just a more efficient way of
measuring the phase.

There are, actually, very few “paradigms” in the design of quantum algorithms,
and some of the steps (equal superposition, some operation thereupon) are
necessary.

One may consider, for example , amplitude amplification (algorithms above and
Grover) with or without quantum Fourier transform, Harrow-Hassidim-Lloyd
(HHL), and quantum signal processing (QSP).
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