
CHAPTER 10

Applications in Security

The question of many people’s minds is whether and when “quantum computers would kill RSA”? We

will review some recent work in security applications:

• generating random strings

• quantum key distribution

• Shor factoring

• Grover-based factoring

• variational factoring.

While the first two happily live in “vendor-land”, the latter three are more involved.

1. Generating random strings

US authorities now recommend using random strings only from quantum effects, rather than pseudo-

random generators. In some cases Bierhorst et al. [2018], quantum random number generators (RNG)

come with strong guarantees, but often, it seems an overkill to utilize a quantum computer to generate

random numbers. There are now purpose-built devices Avesani et al. [2018] that can generate random

strings at 17 Gbps, exceeding what can be done with near-term quantum computers. The purpose-built

devices can be bought, e.g., from ID Quantique.

2. Quantum key distribution

An important quantum technology in security is quantum key distribution, which makes it possible to

certify that the communication has not been intercepted. There are two approaches:

• Prepare-and-measure: measuring an unknown quantum state changes it.

• Entanglement-based : measuring one of two entangled quantum systems affects the other.

Either way, one can calculate the amount of information that has been intercepted by measurement. ID

Quantiq showcased quantum key distribution at 307 km, and sells related devices. Toshiba demonstrated

QKD at 100 km of fiber in 2004 and the first with a continuous key rate exceeding 10 Mbit/second in

2017. CTU has purchased such devices from both ID Quantiq and Toshiba.

3. Factoring integers

Much of modern cryptoprimitives are built on factoring of large integers. A textbook version of public-key

cryptography, here cited from Nielsen and Chuang [2002] in verbatim, is as follows:

(1) Select two large prime numbers, p and q.

(2) Compute the product n = pq.

(3) Select at random a small odd integer, e, that is relatively prime to φ(n) = (p− 1)(q − 1).

(4) Compute d, the multiplicative inverse of e, modulo φ(n).

(5) The RSA public key is the pair P = (e, n). The RSA secret key is the pair S = (d, n).

The encryption of message M on log n bits involves Me mod n to obtain E(M), while decryption

requires E(M)d mod n.

What is the complexity of factoring n to p and q?

1

• poly(log(n)) is the runtime of factoring algorithms on a BSS machine. Testing whether an

integer is a prime is in P, but does not provide the factors, when the number is not prime.

• O(n1/4) is the runtime of the best deterministic factoring algorithms for factoring an integer n

with log n bits in length.

• O(exp(c(log n)1/3(log log n)2/3)) is the runtime of the best randomized algorithms, for some

constant c and integer n. The runtime is thus subexponential, but not polynomial time:

O(exp(
√

(log n)(log n)) = O(n). It is thus unlikely that factoring is NP-Complete. The elliptic

curve method (ECM, Lenstra Jr [1987]) is the fastest known algorithm for small numbers, e.g.

within 100 digits. The the number field sieve (NFS, Lenstra et al. [1990]) is the best classical

algorithm for large numbers, and has been used to factor a 240-digit (795-bit) number in 900

core-years.

• O((log n)2(log log n)(log log log n)) is the runtime of a quantum algorithm introduced by Peter

Shor Shor [1994], along with a polynomial-time (in log n) classical post-processing algorithm.

3.1. Shor factoring. Peter Shor introduced an algorithm for factoring integers Shor [1994], which

based on two facts of number theory, makes it possible to reduce factoring to order finding, i.e., deter-

mining r in f(x+ r) = f(x) for f(x) = ax. When one receives a composite number n, it uses O(log3 n)

order-finding operations to produce a non-trivial factor of n with a constant probability.

This is based on the following facts:

Theorem 5.2 in Nielsen and Chuang [2002]: Suppose that n is an L-bit composite number, and x is a

non-trivial solution to the equation x2 = 1 mod n in the range 1 ≤ x ≤ n, i.e., neither x = 1 mod N

nor x = n. − 1 = −1 mod n. Then at least gcd(x − 1, n) and gcd(x + 1, n) is a non-trivial factor of n

can be computed using O(L3) operations.

Theorem 5.3 in Nielsen and Chuang [2002]: Suppose that n = pα1
1 pα2

2 · · · pαm
m is the prime factorization

of an odd composite positive integer. Let x be an integer chosen uniformly at random, subject to the

requirements that 1 ≤ x ≤ n − 1 and x is co-prime to n. Let r be the order of x mod n. Then the

probability r is even and xr/2 6= −1 mod n is greater or equal to 1− 1
2m .

With these facts, we can formulate the Shor factoring algorithm:

(1) If n is even, return 2.

(2) If n = ab for a ≥ 1 and b ≥ 2, return a.

(3) Choose x in [1, n-1]. If gcd(x, n) > 1, return gcd(x, n).

(4) Use order-finding to find the order r of x modulo n. If r is even and xr/2 6= −1 mod n and

either of gcd(xr/2 − 1, n) and gcd(xr/2 + 1, n) is non-trivial, return the non-trivial factor.

(5) Repeat from 3 otherwise.

Shor’s order-finding works as follows:

(1) creates an initial, Q-qubit state |0〉⊗Q
(2) apply Hadamard transform on it: 1√

Q

∑Q−1
k=0 |k〉

(3) apply the function f(x) = axmodN using Uf |x, 0n〉 = |x, f(x)〉 to obtain

Uf
1√
Q

Q−1∑
x=0

|x, 0n〉 =
1√
Q

Q−1∑
x=0

|x, f(x)〉

such that the value we are looking for is in the phase

(4) apply the quantum Fourier transform: 1
Q

∑Q−1
x=0

∑Q−1
y=0 ω

xy|y, f(x)〉
(5) obtain y by measuring the first register. The probability of measuring |y, z〉 is

1

Q2

sin2(πmryQ)

sin2(πryQ)

.

2

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

10
24

0

12
28

8

14
33

6

16
38

4

20
48

0

24
57

6

28
67

2

32
76

8

40
96

0

49
15

2

57
34

4

65
53

6

modulus length n (bits)

1

5

10

50

100

500

1000

5000

10000

50000

100000
ex

pe
ct

ed
 ti

m
e

(h
ou

rs
) a

nd
 p

hy
sic

al
 q

ub
it

co
un

t (
m

eg
aq

ub
its

)
RSA via Ekerå-Håstad, hours
RSA via Ekerå-Håstad, megaqubits
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, hours
RSA via Ekerå-Håstad - 0.01% gate error instead of 0.1%, megaqubits
Short DLP or Schnorr DLP via EH, hours
Short DLP or Schnorr DLP via EH, megaqubits
Schnorr DLP via Shor, hours
Schnorr DLP via Shor, megaqubits
General DLP via EH, hours
General DLP via EH, megaqubits
General DLP via Shor, hours
General DLP via Shor, megaqubits

Figure 10.1. Scaling of Shor’s Factoring: Log-log plot of estimated space (in the mil-

lions of qubits) and expected-time costs (days required) with the number of bits of RSA

keys, cited from Gidney and Ekera [2021] in verbatim.

Let us consider the example of n = 15.

(1) Let us consider n = 15 and a random number x coprime (having no non-trivial common factors)

with n, e.g., x = 7.

(2) Compute the order r of x modulo n, as follows: apply Hadamard transform to the first register

of |0〉|0〉. Compute f(k) = xk mod n in the second register

1√
2t

[|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉+ |4〉|1〉+ |5〉|7〉+ |6〉|4〉+ ·].

When inverse Fourier transform is applied to the first register (seen as 2t = 2048 frequencies)

and the second register is measured, one obtains one of 1, 7, 4, or 13. Eventually, we obtain

r = 4 as the order of x = 7.

(3) Classically, we see r is even, and xr/2 mod n = 72 mod 15 = 4 6= −1 mod 15. Again classi-

cally, we run gcd(x2 − 1, 15) = 3 and gcd(x2 + 1, 15) = 5 to obtain two factors.

Shor’s factoring has been demonstrated for the number of 15 more than two decades ago, and the

scalability beyond is still very much a subject of lively discussion. A Google team Gidney and Ekera

[2021] estimates that one could perform factoring of 2048-bit RSA integers in 8 hours using 20 million

noisy qubits. (See Figure 10.1.) The assumptions of a planar grid of qubits with nearest-neighbor

connectivity, physical gate error rate of 10−3, a surface code cycle time of 1 microsecond, and the use

of surface codes are all quite realistic. Surface codes are textbook material [Nielsen and Chuang, 2002,

Chapter 10], although not covered by this course. A French team Gouzien and Sangouard [2021] suggested

that one could perform factoring of 2048-bit RSA integers in 177 days with 13436 qubits, without being

very explicit about the requirement of 430 million memory qubits. Likewise, the use of 3D gauge color

codes is out of reach in current qubit technologies. Otherwise, the assumptions of physical gate error

rate of 10−3, a processor cycle time of 1 microsecond are quite realistic.

3.2. Grover-based factoring. Bernstein et al. [2017] introduced another quantum algorithm for

factoring, which they call GEECM (Grover plus Edwards Elliptic Curve Method). To gain some intuition,

consider the trial division, where we would generate a small primes and perform Grover search for those

3

that divide the n. It reduces the number of operations of Edwards Elliptic Curve Method from L
√
2+o(1)

to L1+o(1) for L = exp(
√

log
√
n log log

√
n).

3.3. Variational factoring. In principle, you can use drastically fewer qubits in some cases, but

with lesser hopes of speed-up. Notably, the explicit, “schoolbook” binary multiplication of p and q yields

equations that have to be satisfied by bits pi and qi and carry bits zi,j . One can formulate a “least-squares

version” of the problem, which would minimise the sum of residuals squared, across the equations (bits).

Clearly, this would be a QUBO, as in the previous lecture, and approached with, e.g., QAOA without

any guarantees of finding the solution. On the flipside, one can get lucky. For instance, Karamlou et al.

[2021] report factoring 1099551473989, 3127, and 6557 with 3, 4, and 5 qubits, respectively, using a

QAOA.

In a very similar spirit, a Chinese team Yan et al. [2022] got to the frontpages of many newspapers

announcing that 2048-bit semi-prime number can be factored on a NISQ level computer with 372 physical

qubits and a gate depth in the thousands. The same paper has shown that a 48-bit number can be

factored using the Schnorr factoring and QAOA. Unfortunately, they did not analyze how many runs of

the circuit this would require in general. Our analyses Kungurtsev et al. [2022] show would scale much

worse than the runtime of the Shor factoring.

3.4. A Rejoinder. In the US, Congress passed Quantum Computing Cybersecurity Preparedness

Act1 in December 2022, which bars federal authorities from using cryptoprimitives based on factoring.

It is unlikely that this is based on the discovery of a new factoring algorithm, but rather based on the

risk of there being one. In many information security standards, you need to be sure that if you encrypt

today, no one will be able to decrypt without knowing the key for the next 20+ years. In “Store Now,

Decrypt Later” attacks, nation states already gain access to large troves of encrypted information, in the

hope that they would be able to decrypt it in the near future. Notice that for digital signatures (e.g.,

certificates on the web), the risk is much less: you can wait until a new factoring algorithm appears.

1https://www.congress.gov/bill/117th-congress/house-bill/7535/text

4

Bibliography

Marco Avesani, Davide G Marangon, Giuseppe Vallone, and Paolo Villoresi. Source-device-independent

heterodyne-based quantum random number generator at 17 gbps. Nature communications, 9(1):5365,

2018.

Daniel J Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum rsa. In Post-Quantum

Cryptography: 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,

2017, Proceedings 8, pages 311–329. Springer, 2017.

Peter Bierhorst, Emanuel Knill, Scott Glancy, Yanbao Zhang, Alan Mink, Stephen Jordan, Andrea

Rommal, Yi-Kai Liu, Bradley Christensen, Sae Woo Nam, et al. Experimentally generated randomness

certified by the impossibility of superluminal signals. Nature, 556(7700):223–226, 2018.

Craig Gidney and Martin Ekera. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy

qubits. Quantum, 5:433, 2021.

Élie Gouzien and Nicolas Sangouard. Factoring 2048-bit rsa integers in 177 days with 13 436 qubits and

a multimode memory. Phys. Rev. Lett., 127:140503, Sep 2021. doi: 10.1103/PhysRevLett.127.140503.

URL https://link.aps.org/doi/10.1103/PhysRevLett.127.140503.

Amir H. Karamlou, William A. Simon, Amara Katabarwa, Travis L. Scholten, Borja Peropadre, and

Yudong Cao. Analyzing the performance of variational quantum factoring on a superconducting

quantum processor. npj Quantum Information, 7(1):156, 2021. doi: 10.1038/s41534-021-00478-z.

URL https://doi.org/10.1038/s41534-021-00478-z.

Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, and Elton Yechao Zhu. Iteration complexity

of variational quantum algorithms. arXiv preprint arXiv:2209.10615, 2022.

Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M Pollard. The number field sieve.

In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 564–572,

1990.

Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics, pages 649–673,

1987.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. Cambridge

University Press, 2002.

Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings

35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.

Bao Yan, Ziqi Tan, Shijie Wei, Haocong Jiang, Weilong Wang, Hong Wang, Lan Luo, Qianheng Duan,

Yiting Liu, Wenhao Shi, Yangyang Fei, Xiangdong Meng, Yu Han, Zheng Shan, Jiachen Chen, Xuhao

Zhu, Chuanyu Zhang, Feitong Jin, Hekang Li, Chao Song, Zhen Wang, Zhi Ma, H. Wang, and Gui-Lu

Long. Factoring integers with sublinear resources on a superconducting quantum processor, 2022.

5

https://link.aps.org/doi/10.1103/PhysRevLett.127.140503
https://doi.org/10.1038/s41534-021-00478-z

	Chapter 10. Applications in Security
	1. Generating random strings
	2. Quantum key distribution
	3. Factoring integers

	Bibliography

