
CHAPTER 7

Adiabatic Quantum Computing and Quantum Replacements of

Optimization Algorithms

1. Adiabatic Quantum Computation is Universal

In this lecture we would like to explain the following beautiful result by Aharonov et al. [2008]:

Theorem 1. The model of adiabatic computation is polynomially equivalent to the standard model of

quantum computation.

More specifically, Theorem 1 can be also described as:

Theorem 2. The model of adiabatic computation with explicit sparse Hamiltonians is polynomially

equivalent to the standard model of quantum computation.

Even more interestingly, in Aharonov et al. [2008] it is explicitly shown that:

Theorem 3. Any quantum computation can be efficiently simulated by an adiabatic computation with

2-local nearest neighbor Hamiltonians operating on six-state particles set on a two dimensional grid.

We will discuss how one begins to even show these theorems above.

1.1. Motivation. Let us provide some motivation. The study of adiabatic quantum computation

(AQC) was initiated several years ago by Farhi, Goldstone, Gutmann and Sipser Farhi et al. [2000], who

suggested a novel quantum algorithm for solving classical optimization problems such as Satisfiability

(SAT).

Their algorithm, that for what follows will abbreviated as AQC (abusing notation) and will explicitly

describe later on, is based on a celebrated theorem in quantum mechanics known as the adiabatic theorem.

The exact worst-case behavior of AQC is not known. On one the positive side, several simulations on

random instances of up to 20 quantum bits led to various optimistic speculations. Fill in modern details.

On the negative side, there is some evidence that AQC takes exponential time in the worst-case for

NP-complete problems.

Nevertheless, adiabatic computation was since shown to be promising in other less ambitious directions:

it possesses several interesting algorithmic capabilities, as we will soon review, and in addition, it exhibits

inherent robustness against certain types of quantum errors.

1.2. Adiabatic Quantum Computation. Let us re-introduce AQC for another time (sorry for

being repetitive): A computation in this model is specified by two Hamiltonians named Hinit and Hfinal .

The ground state1 of Hinit is required to be an easy to prepare state (it can be done efficiently) and

serves as the input of the computation.

The output of AQC is the ground state of the final Hamiltonian Hfinal . Hence, we choose an Hfinal

whose ground state represents the solution to our problem.

Additionally, we require the Hamiltonians to be local2.

1Recall that this refers to the eigenvector with smallest eigenvalue of a Hamiltonian.
2We require them to only involve interactions between a constant number of particles (this can be seen as the equivalent

of allowing gates operating on a constant number of qubits in the gate model)
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This, in particular, makes sure that the Hamiltonians have a short classical description (simply by listing

the matrix entries of each local term).

The running time of the adiabatic computation is determined by the minimal spectral gap3 of all the

path connected Hamiltonians along the curve:

s : [0, 1]→MH

Hinit 7→ Hfinal

Below we see a schematic description of the space of Hamiltonians. Note that within each disconnected

component we only consider Hamiltonians related by homotopy equivalent paths.

MH

MH1

MH2

MH3
Hinit Hfinal

Concretely for any s ∈ [0, 1] we have and infinite family of path parametrized Hamiltonians:

H(s) = (1− s)Hinit + sHfinal (7.1)

and of course we are interested in reachign s = 1 to obtain Hfinal.

If this is done “slowly enough” we say we perform adiabatic computation and it is polynomial time if

the corresponding minimal spectral gap is at least inverse polynomial.

Let us provide further motivation from a physics point of view:

• Recall that H corresponds to the energy of the quantum system.

• To be physically realistic and implementable it must be local.

• Ground state of H is the state of lowest energy.

• We can set up a quantum system in the ground state of Hinit (which is supposed to be easy

to generate) and apply the Hamiltonian Hinit to the system. We then slowly modify the

Hamiltonian along the path from Hinit towards Hfinal. .

From the adiabatic theorem it follows that if this transformation is performed slowly enough (deter-

mined by the minimal spectral gap), the final state of the system will be in the ground state of Hfinal ,

as required.

What about Computational Power van Dam et al. [2001]? What is the computational power of

this model? In order to refer to the adiabatic model as a computational model that computes classical

functions (rather than quantum states), we consider the result of the adiabatic computation to be the

3The difference between the ground state eigenenergy and the first excited state eigenenergy.
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outcome of a measurement of one or more of the qubits, performed on the final ground state. AQC is

performed on qubits similar to the ones of the gate-based computers.

It is known from the very early 2000’s that adiabatic computation can be efficiently simulated by standard

quantum computers Van Dam et al. [2001], Farhi et al. [2001]. It follows that, its computational power

it cannot be greater than that of standard (gate-based) quantum computers.

Several positive results are known, regarding the paower of AQC. For example Grover search can be

realized as adiabatic quantum computation Van Dam et al. [2001], Roland and Cerf [2002]

Moreover, AQC can “tunnel” through wide energy barriers and thus outperform simulated annealing

Farhi et al. [2002].

Global min
Local min

However, whether adiabatic computation can achieve the full power of quantum computation was not

known. Even whether adiabatic computation can simulate general classical computations efficiently was

unknown prior to Aharonov et al. [2008].

The interest for optimization problems: What was known is the potential of AQC on a restricted class

of adiabatic algorithms that can be referred to as adiabatic optimization algorithms.

In these algorithms, Hfinal is chosen to be a diagonal matrix, corresponding to a combinatorial optimiza-

tion problem. Being diagonal implies that the ground state of Hfinal (the output of the computation)

is a classical state, (a state in the computational basis). Nevertheless, we want to show something more

powerful. We only will assume that the Hamiltonians involved are local.

For that let us discuss n-qubit systems: An n-qubit is described by a state in Hilbert space of dimension

2n, the tensor product of 2-dimensional Hilbert spaces H = C, that is:

|ψ〉 ∈ C⊗n. (7.2)

In terms of the individual qubits:

|ψ〉 = |i1〉 ⊗ . . . |in〉 = |i1 . . . in〉, (7.3)

where ij ∈ {0, 1}.
Evolution. In the standard model of quantum computation, the state of n qubits evolves in discrete

time steps by unitary operations. Of course, the underlying physical description of this evolution is

continuous, and is governed by Schrödinger’s equation:

ı
d

dt
|ψ(t)〉 = H|ψ(t)〉 (7.4)

where H is the system’s Hamiltonian and |ψ(t)〉 is the state of the n qubits at time t.

We have already seen that the solution of Schrödinger equation is given as:

|ψ(t)〉 = exp(−ıHt)|ψ(0)〉. (7.5)

Given that the state of the system at time t = 0 is equal to |ψ(0)〉, one can in principle solve Schrödinger’s

equation with this initial condition, to get |ψ(T )〉, the state of the system at a later (terminal) time t = T .

Spectral Gap. We define ∆(H), the spectral gap of a Hamiltonian H, to be the difference between

the lowest eigenvalue of H and its second lowest eigenvalue. Note that ∆(H) = 0 if the lowest eigenvalue

is degenerate.

What is Locality? One cannot efficiently apply any arbitrary Hamiltonian on a n-qubit system (just

describing it requires roughly 22n space). For this we restrict to k-local Hamiltonians. We say that a

Hamiltonian H is k-local if H can be written as
∑
AH

A where A runs over all subsets of k particles.

3



Notice that for any constant k, a k-local Hamiltonian on n-qubits can be described by 22knk = poly(n)

numbers. We say that H is local if H is k-local for some constant k. (Commonly k = 2 in NISQ devices.)

1.3. Adiabatic Theorem. The cornerstone of the adiabatic model of computation is the celebrated

adiabatic theorem Kato [1950]. Consider a time-dependent Hamiltonian H(s), and a system initialized

at time t = 0 in the ground state of H(0) (here and in the following we assume that for all H(s) has a

unique ground state for all s).

We let the system evolve according to the Hamiltonian H(s), for s := t/T , from time t = 0 to the

terminal time t = T . As said before, The adiabatic theorem affirms that for large enough T the final

state of the system is very close to the ground state of H(1).

How large T should be for this to happen is determined by the spectral gap of the Hamiltonians ∆(H(s))

Aharonov et al. [2008].

In the figure below we see the change of the few lowest eigenenergies for a certain evolution. It is crucial

that the spectral gap does not change sign: the lowest blue eigenenergy nowhere crosses with the orange

one.

Time

En
er

gy

Energy spectrum variation for a Hamiltonian H
Ground Energy Level
1st Energy Level
2nd Energy Level
3rd Energy Level
4th Energy Level

Physical intuition: Consider a spin particle (e.g. an electron) in a magnetic field B which rotates from

the x direction to the z direction in a total time T . The dynamics of the particle are described by the

Hamiltonian:

H(t) = − cos

(
πt

2T

)
σx − sin

(
πt

2T

)
σz. (7.6)

Suppose that initially, the particle points in the x direction: |ψ(0)〉 = (|0〉+ |1〉)/
√

2, the ground state of

H(0). As the magnetic field is slowly rotated toward the z direction, see Fig. below, the particle’s spin

begins to precess about the new direction of the field, moving it toward the z axis.
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Note that this produces a small wiggling component out of the xz-plane. Adiabaticity is seen by

allowing T to be made larger and larger, so that the rotation of the field direction happens more and

more slowly (as compared to the speed of precession). Then, the state will precess in a tighter and

tighter orbit about the field direction (aligning completely with the geodesic). In the limit of arbitrarily

slow rotation of the field, the state simply tracks the field, remaining in the instantaneous ground state

of H(t).

Full statement (at last): More generally, let H(s) be a Hermitian operator that varies smoothly as a

function of s := t/T . Then for T arbitrarily large, H(t) varies arbitrarily slowly as a function of t. An

initial quantum state |ψ(0)〉 evolves according to the Schrödinger equation (7.4), or, equivalently:

ı
d

ds
|ψ(s)〉 = TH|ψ(s)〉. (7.7)

Now suppose that |ψ(0)〉 is an eigenstate of H(0), which we assume for simplicity is the ground state,

and is nondegenerate. Furthermore, suppose that the ground state of H(s) is nondegenerate for all s.

Theorem 4 (Adiabatic Theorem). Given the above, in the limit T → ∞, |ψ(T )〉 will be the ground

state of H(1).

Remark: The proof of the adiabatic theorem is a very interesting exercise.

2. Sketch Proofs for the Universality of AQC

Let us repeat ousrselves (again) but a bit more formally:

Theorem 5 (Adiabatic Theorem (Proper)). Let Hinit and Hfinal be two Hamiltonians acting on a

quantum system and consider the time-dependent Hamiltonian H(s) := (1− s) Hinit +sHfinal. . Assume

that for all s,H(s) has a unique ground state. Then for any fixed δ > 0, if

T ≥ Ω

(
‖Hfinal −Hinit ‖1+δ

εδ mins∈[0,1] {∆2+δ(H(s))}

)
(7.8)

then the final state of an adiabatic evolution according to H for time T (with an appropriate setting of

global phase) is ε-close in `2-norm to the ground state of Hfinal .

The matrix norm is the spectral norm ‖H‖ := maxw ‖Hw‖/‖w‖.
The AQC model (again): Let us now describe the model of adiabatic computation. The adiabatic

circuit is determined by Hinit and Hfinal and the output of the computation is (close to) the ground

state of Hfinal .
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Definition 1. A k-local AQC (n, d,Hinit , Hfinal , ε) is specified by two k-local Hamiltonians, Hinit and

Hfinal acting on n d-dimensional particles, such that both Hamiltonians have unique ground states. The

ground state of Hinit is a tensor product state. The output is a state that is ε-close in `2-norm to the

ground state of Hfinal. Let T be the smallest time such that the final state of an adiabatic evolution

according to H(s) := (1−s)Hinit +sHfinal for time T is ε-close in `2-norm to the ground state of Hfinal .

The running time of the adiabatic algorithm is defined to be T ·maxs ‖H(s)‖.

2.1. Proof Sketch of the Equivalence 1.

Gates to AQC.

Theorem 1 can be proved by simulating a quantum circuit with L (two-qubit) gates on n qubits by an

adiabatic computation on n+ L qubits.

Note that the opposite direction can also be shown Farhi et al. [2000].

We will show this by considering 5-qubit interactions. However, it is possible to reduce it to three. (Note

that the practical implementation of 5-qubit interactions is still not easy.)

A Theorem:

Theorem 6. Given a quantum circuit on n qubits with L two-qubit gates implementing a unitary U

and ε > 0 , there exists a 5-local adiabatic computation (n + 2, 2, Hinit, Hfinal, ε) whose running time

is poly(L, 1/ε) and whose output is ε-close to U |0〉n = U |0〉⊗n. Additionally, Hinit and Hfinal can be

computed by a polynomial time Turing machine.

The Hamiltonian: The Hamiltonian we need is defined in Kitaev et al. [2002]. We begin by defining

a state

|γ`〉 := |α(`)〉 ⊗ |1`0L−`〉c. (7.9)

Here |α(`)〉 denotes the state of the circuit after the application of the `-th gate (and the superscript c

denotes the clock qubits required for the proof of the theorem). The notation |1`0L−`〉 means that there

are ` qubits in the state |1〉 followed by (L− `) qubits in the state |0〉.
We now define the Hamiltonian Hinit with ground state |γ0〉 = |0n〉 ⊗

∣∣0L〉c,
and the local Hamiltonian Hfinal with ground state |η〉 = 1√

L+1

∑L
`=0 |γ`〉.

We know what our initial and final eigenvectors need be. It turns out that the way to do it is:

Hinit := Hclock init +Hinput +Hclock

Hfinal :=
1

2

L∑
`=1

H` +Hinput +Hclock

(7.10)

Note that the terms in the two Hamiltonians are defined such that the only state whose energy is 0 is

the desired ground state.

This is done by assigning an energy penalty to any state that does not satisfy the required properties of

the ground state. The different terms, which correspond to different properties of the ground states, are

described in the following paragraphs.

Adiabatic Evolution: The adiabatic evolution then follows the time-dependent Hamiltonian

H(s) = (1− s)Hinit + sHfinal (7.11)

Notice that as s goes from 0 to 1, Hclock init is slowly replaced by 1
2

∑L
`=1H` while Hinput and Hclock

are held constant.

The Hamiltonians Explained: Hclock First, Hclock checks that the clock’s state is of the form

|1`0L−`〉c for some 0 ≤ ` ≤ L (thus “clock”).
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To do this we give a penalty to any state (of the clock register) that contain a sequence 01, that is:

Hclock :=

L−1∑
`=1

|01〉〈01|c`,`+1. (7.12)

Below, we present a schematic of the Hilbert space of our system. Note that there is a typo in the figure,

it should read C2n and C2L.

Cn CL⊗

The subscript indicates which clock qubits the projection operates on. The term |01〉〈01|c`,`+1 has an

energy penalty (eigenvalue 1) when the clock qubits at positions ` and `+ 1 are in the state |01〉, and no

energy penalty (eigenvalue 0) otherwise. By summing these terms over all pairs of adjacent clock qubits

(from ` = 1 to L − 1), the clock Hamiltonian enforces a penalty whenever there is an out-of-order pair

of clock qubits.

This means that the lowest energy states of the clock Hamiltonian correspond to the correct progression

of the computation, where the clock qubits represent a valid encoding of the computation stages. In this

way, Hclock helps control the adiabatic evolution of the quantum system and ensures that it follows the

desired gate sequence.

The Hamiltonians Explained: Hinit Hinput checks that if the clock is at |0〉⊗L (we ommited the c-clock

index here, clearly referring to Hclock) then the computation qubits must be in the state |0〉⊗n. This is

given by:

Hinit :=

n∑
i=1

|1〉〈1| ⊗ |0〉〈0|. (7.13)

Let us discuss Hclock init. The goal of Hclock init is to check that the clock’s state is |0〉⊗L:

Hclock init := |1〉〈1|. (7.14)

Finally, we have the term

1

2

L∑
`=1

H` (7.15)

which is the term representing the gate-based Hamiltonian and it is only apparent in the end of the AQC

(in principle it is unknown).

Summary: Hclock init and Hclock: These terms are related to the clock qubits. Hclock init sets the initial

state of the clock qubits and ensures that the computation starts with all clock qubits in the state |1〉c.
Hclock penalizes out-of-order transitions and enforces a step-by-step progression through the circuit.

Hinput: This term sets the initial state of the quantum circuit. It essentially encodes the input data of

the problem you want to solve.

1
2

∑L
`=1H`: This term is present only in the final Hamiltonian, Hfinal. It represents the quantum gates

in the circuit. The factor 1
2 ensures that the spectrum of the Hamiltonian is non-negative, which is a

requirement for the adiabatic theorem to hold.

The final Hamiltonian: We now proceed to the first term in Hfinal . The Hamiltonian H` checks that the

propagation from step ` − 1 to ` is correct. It checks that it corresponds to the application of the gate

U`.
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For 1 < ` < L, it is defined as:

H` :=111⊗ |100〉〈100|c`−1,`,`+1 − U` ⊗ |110〉〈100|c`−1,`,`+1

− U†` |100〉〈110|c`−1,`,`+1 + 111⊗ |110〉〈110|c`−1,`,`+1.
(7.16)

Intuitively, the three-qubit terms above move the state of the clock one step forward, one step backward,

or leave it unchanged (this reminds us a quantum walk). The accompanying matrices U`, U
†
` describe

the associated time evolution. We have two boundary cases ` = 1, L (initial and terminal time) for which

we omit one clock qubit from these terms and define

H1 :=111⊗ |00〉〈00|1,2 − U1 ⊗ |10〉〈00|1,2 − U†1 ⊗ |00〉〈10|1,2 + 111⊗ |10〉〈10|1,2 (7.17)

HL := = 111⊗ |10〉〈10|L−1,L − UL ⊗ |11〉〈10|L−1,L − U†L ⊗ |10〉〈11|L−1,L + 111⊗ |11〉〈11|. (7.18)

Spectral gap inverse in L.

We have now seen what are the Hamiltonians needed to transform a gate-based problem to an AQC.

We need to understand the spectral gap now.

Recall the state given by Eq. (7.9):

|γ`〉 := |α(`)〉 ⊗ |1`0L−`〉c.

Spectral gap inverse in L: s > 1/3.

Let S0 a subspace of Cn ⊗ CL spanned by

{|γ0〉, . . . , |γ1〉} (7.19)

which are equivariant states (w.r.t. the action of Hamiltonians on S). In other words, we have some

form of symmetry.

Theorem 7. The spectral gap of the restriction of H(s) to S0 satisfies:

∆(HS0(s)) = Ω(L−2), (7.20)

for all s ∈ [0, 1].

Interestingly, the proof uses a continuous-time quantum walk. The proof is technical (not very hard)

but we omit it here. The important thing is to understand the need for the Hamiltonians Hinit and Hfinal

in Eq. (7.10).

With the proof on the (inverse in L) polynomial runtime, we claim the following.

The Equivalence Statement: Given a quantum circuit on n qubits with L gates, the quantum

adiabatic algorithm with Hinit and Hfinal as defined in the previous slides, with T = O(ε−δL4+2δ), for

fixed δ > 0, outputs a final state |η〉 that is within `2 distance ε of the history state of the circuit. The

running time of the AQC algorithm is O(TL).

Recall, that already from 2000 it was known that gate-based algorithms can be encoded as AQC. With

the proof of Theorem 1, the universality of AQC is also proven. A detailed introduction with many

complexity theoretical aspects is Albash and Lidar [2018].
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3. Practicalities of Adiabatic Quantum Computing

We have discussed that the solution of computational problem can be encoded into the ground state of

a time-dependent quantum Hamiltonian H(s) which evolves following the paradigm of AQC.

Quantum annealing (QA) is a framework that incorporates algorithms Kadowaki and Nishimori [1998],

Santoro et al. [2002], Das and Chakrabarti [2008] and hardware designed to solve computational problems

by quantum evolution towards the ground states of final Hamiltonians that encode classical (optimization)

problems.

Note that Quantum Annealers are real:

This is the D-Wave 2000Q system. This is a system that performs quantum annealing using supercon-

ducting qubits. The qubits live in the very end of a dilution refridgerator cooled at approximately -273.5

degrees Celcius.

3.1. Stoquasticity. QA therefore, moves between the idealized assumptions of universal AQC and

the unavoidable experimental compromises.

Perhaps the most significant of these compromises has been the design of stoquastic quantum annealers.

Definition 2 (Stoquastic Hamiltonian). A Hamiltonian H is called stoquastic, with respect to a basis

B, if and only if H has real nonpositive off-diagonal matrix elements in the basis B.

For example, a Hamiltonian is stoquastic if and only

〈i|H|j〉 ≤ 0, ∀i, j ∈ {0, 1}n, i 6= j. (7.21)

This means the ground state of H can be expressed as a classical probability distribution.

AQC with Stoquastic Hamiltonians:

Definition 3. Stoquastic adiabatic quantum computation (StoqAQC) is the special case of AQC re-

stricted to k-local (k fixed) stoquastic Hamiltonians.

Essentially, Quantum Annealing (QA) refers to StoqAQC when considered in (realistic) open quantum

systems. For what follows, these two terms are identical.

No Universality: The computational power of stoquastic Hamiltonians has been carefully studied, and

is suspected to be limited in the ground-state AQC setting Albash and Lidar [2018].
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In other words, it is quite unlikely that ground-state StoqAQC is universal Farhi and Harrow

[2016].

3.2. Quantum Annealing is very similar to AQC. QA follows the same idea of AQC. We still

have the same tools:

• An initial, easy-to-prepare state and a Hamiltonian Hinit,

• A problem of interest whose solution is encoded into the ground state of a Hamiltonian Hfinal,

• Adiabatic evolution using Eq. (7.1):

H(s) = (1− s)Hinit + sHfinal (7.22)

Exponential Speedups with QA It turns out that QA can be used to obtain exponential speedups!

Somma, Nagaj, and Kieferovaá Somma et al. [2012] showed that, similarly to the case of quantum walks,

utilizing QA on the glued-trees problem one obtains an exponential speedup.

Glued-Trees Problem

In this problem we are given an oracle OA that concists of the adjacency matrix A of two binary trees

that are randomly glued. There are O(2n) vertices named with randomly chosen 2n-strings.

The oracle OA outputs the names of the adjacent vertices on any given input vertex name.

There are two special vertices:

• ENTRANCE

• EXIT

which are the roots of the binary trees. They can be identified because they are the only vertices of

degree two in the graph.

Glued-Trees Problem: Given an oracle OA for the graph and the name x of the ENTRANCE, find

the name y of the EXIT.

An efficient method based on quantum walks can solve this problem with constant probability, while no

classical algorithm that uses less than a subexponential (in n) number of oracles exists.

10



3.3. Optimization. An optimization problem is a problem to minimize or maximize a real

single-valued function of multivariables called the cost function.

If the problem is to maximize the cost function f , it suffices to minimize −f .

Additional constraints can be imposed on the objective function:

min
x,y

f(x, y) (7.23)

s.t. g(x) ≥ 0 (7.24)

x ∈ Rm, y ∈ Zn (7.25)

(Just a reminder) Optimization problems are classified roughly into two types, easy and hard ones.

Loosely speaking, easy problems are those for which we have algorithms to solve in steps(=time) poly-

nomial in the system size (polynomial complexity). In contrast, for hard problems, all known algorithms

take exponentially many steps to reach the exact solution (exponential complexity). A potential solution

is offered by Quantum Annealing.

Suppose we can solve such problems with QA. Does it converge?

Consider the k-th eigenstate state of the Hamiltonian:

H(s)|k〉 = λk(s)|k〉 (7.26)

with |0(0)〉 being the ground state of Hinit and generically |0(s)〉 the ground state of H(s).

If |0(s)〉 is non-degenerate and if initial ground state is |0(0)〉 then the final state vector, at large T , take

the form:

|ψ(s)〉 =
∑
κ

cκ(s)e−ıTφκ(s)|κ(s)〉 (7.27)

with

φκ(s) =

∫ s

0

λκ(s′)ds′.

Maybe some homework on the topic? It turns out:

c0(s) ≈ 1 +O(T−2), (7.28)

cκ6=0(s) ≈ i

T

[
Aκ(0)− eıT [φκ(s)−φ0(s)]Aκ(s)

]
+O(T−2) (7.29)

The adiabaticity condition becomes:

1

∆κ(t)2

∣∣∣∣〈κ(t)

∣∣∣∣dH(t)

dt

∣∣∣∣ 0(t)

〉∣∣∣∣ = δ � 1. (7.30)

Convergence via Ising model: Suppose that the optimization (7.23) problem we wish to solve can

be represented as the ground-state search of an Ising model of general form

HIsing ≡ −
N∑
i=1

Jiσ
z
i −

N∑
i,j=1

Jijσ
z
i σ

z
j +O(σ3). (7.31)

Here, σαi (α = x, y, z) are the Pauli matrices.

j + 1jj − 1

Jj−1,j Jj,j+1
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Recall, the eigenvalue of σzi is +1 or −1, which corresponds the classical Ising spin.

Most combinatorial optimization problems can be written in this form by, for example, mapping binary

variables {0, 1} to spin variables {±1}. Another important assumption is that the Hamiltonian (7.31) is

proportional to the number of spins N for large N .

Transverse Field To realize QA, a (kinetic) energy term is introduced typically by the so-called time-

dependent transverse field:

HTF(t) ≡ −Γ(t)

N∑
i=1

σxi (7.32)

which results in a variety of possible quantum mechanical effects to the chain:spin flips, quantum fluc-

tuations or quantum tunneling, between the two states σzi = 1 and σzi = −1.

Essentially this allows a quantum search of the phase space of the system.

Initially the strength of the transverse field Γ(t) is chosen to be very large, and the total Hamiltonian

H(t) = HIsing +HTF(t) (7.33)

is dominated by the second kinetic term. (If you know about Simulated Annealing (SA), this is the

quantum analogue of the high-temperature limit.)

The evolution of the TF Ising Model: The coefficient Γ(t) is then gradually and monotonically

decreased toward 0, leaving eventually only the potential term HIsing .

Accordingly the state vector |ψ(t)〉, which follows the real-time Schrödinger equation, is expected to

evolve from the trivial initial ground state of the transverse-field (7.33) to the non-trivial ground state

of (7.31), which is the solution of the optimization problem.

An important issue is how slowly we should decrease Γ(t) to keep the state vector arbitrarily close to the

instantaneous ground state of the total Hamiltonian.

The following Theorem provides a solution to this problem as a sufficient condition.

Theorem 8. The adiabaticity (7.30) for the transverse-field Ising model (7.31) yields the time depen-

dence of Γ(t) as

Γ(t) = a(δt+ c)−1/(2N−1) (7.34)

for t > t0 (for given t0 > 0) as a sufficient condition of convergence of QA. Here a, c are small constants

O(1) and δ is a small parameter that controls adiabaticity.

Point is: The power decay above satisfies the adiabaticity condition (7.30) which guarantees

convergence to the ground state of HIsing as t→∞.

QA in Practice: Optimization.

In practical situations QA is used as heuristic optimization method.

Due to hardware constructions, at the moment only Quadratic Binary Optimization (QUBO) problems

can be implemented.

A QUBO problem reads

min
x∈{0,1}N

Q(x) (7.35)

where the objective function Q is defined as:

Q(x) :=

N∑
i,j=1

Qijxixj +

N∑
i=1

cixi. (7.36)

The problem to be optimized is then fully specified by Qij and ci.

A broad class of paradigmatic optimization problems from Vertex Cover to the Traveling Salesperson

problem have been mapped to QUBO form.
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What happens if k ≥ 3? (That is, if we have problem with interactions of degree 3 or higher.) If the

problem of interest has a cost function of high-order interactions, than the quadratic, one has to encode

this information in ancilla qubits.

For example, assume a problem encoding involves the 3-local expression

xyz, x, y, z ∈ R.

This has to be mapped to the expression

xw,

where w := yz and impose the additional constraint

3w + yz − 2yw − 2zw.

The solution is (zero penalization) w = yz.

Example: The Knapsack Problem:

We are given a set of weights w ∈ Zn≥0 and their corresponding values v ∈ Zn≥0, and the objective is to

maximize the total value of the items that can be packed into a knapsack subject to a given weight limit

W .

max

n∑
i=1

vixi,

s.t.

n∑
i=1

wixi ≤W,
(7.37)

where W is the maximum weight limit (threshold) of the knapsack and xi is the binary variable repre-

senting whether the i-th item is to be placed in the knapsack.

MILP to QUBO: In converting MILPs to QUBOs we introduce a slack variable S for each linear

inequality and transform it into an equivalent linear equality. We add to the objective a penalty term:

λ0

(
n∑
i=1

wixi −W + S

)2

(7.38)

where the purpose of the auxiliary slack variable S is to reduce this term to 0 once the constraint has

been satisfied, 0 ≤ S ≤ maxx
∑n
i wixi −W .

Note that in practice, S is decomposed into binary representation using variables sk ∈ {0, 1} as follows:

S =

Ns∑
k=1

2k−1sk. (7.39)

The parameter Ns corresponds to the number of binary variables required to represent the maximum

value that can be assigned to the slack variable, and in the case of Knapsack, Ns = dlog2(W )e, where

dxe is the ceiling function. This is often called “log-encoding”.

The QUBO formulation: the Knapsack problem can be formulated then as:

max

n∑
i

vixi − λ0

(
n∑
i

wixi −W +

N∑
k=1

2k−1sk

)2

, (7.40)

Maping to the Ising model:

min −

 n∑
i=1

n∑
j=1

Jijsisj +

n∑
i=1

hisi + c

 (7.41)
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where

Jij = λ02k−1wiδij , (7.42)

hi =
vi
2
− λ0wiW, (7.43)

c =

n∑
i=1

vi
2

+ λ0

(
n∑
i=1

w2
i

4
+

N∑
k=1

22k−2

)
. (7.44)

Does QA Fail?

Can QA Succeed?
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4. Variational Quantum Algorithms

Two fundamental references on VQAs are the original paper on the Variational Quantum Eigensolver

Peruzzo et al. [2014] and the subsequent paper on the Quantum Approximate Optimization Algorithm

Farhi et al. [2014]. A beautiful survey is given by Cerezo et al. [2021].

Parametrized Quantum Circuits (PQCs): Variational Quantum Algorithms (VQAs) provide a

general framework that can be used to solve a variety of problems.

For that we first need the idea of a parametrized quantum circuit.

Definition 4. A parametrized quantum circuit (PQC) is a continuous function U : RL → U(N)

mapping any real parameter vector ϑ ∈ RL to a unitary U(ϑ).

In practice such a quantum circuit is a sequence of universal quantum gates’ compositions and/or tensor

products.

Consider, for a moment, the following optimization problem (and keep it in mind):

min
x∈{0,1}n

f(x). (7.45)

A VQA is, essentially, a (quantum) continuous relaxation of this problem.

Below we see a PQC example:

Here U(θ) is given as:

U(θ) = RY (θ1)⊗RY (θ2)⊗RY (θ3)

=

(
cos θ12 − sin θ1

2

sin θ1
2 cos θ12

)
⊗
(

cos θ22 − sin θ2
2

sin θ2
2 cos θ22

)
⊗
(

cos θ32 − sin θ3
2

sin θ3
2 cos θ32

)

=



c1c2c3 −c1c2s3 −c1s2c3 c1s2s3 −s1c2c3 s1c2s3 s1s2c3 −s1s2s3

c1c2s3 c1c2c3 −c1s2s3 −c1s2c3 −s1c2s3 −s1c2c3 s1s2s3 s1s2c3
c1s2c3 −c1s2s3 c1c2c3 −c1c2s3 −s1s2c3 s1s2s3 −s1c2c3 s1c2s3

c1s2s3 c1s2c3 c1c2s3 c1c2c3 −s1s2s3 −s1s2c3 −s1c2s3 −s1c2c3
s1c2c3 −s1c2s3 −s1s2c3 s1s2s3 c1c2c3 −c1c2s3 −c1s2c3 c1s2s3

s1c2s3 s1c2c3 −s1s2s3 −s1s2c3 c1c2s3 c1c2c3 −c1s2s3 −c1s2c3
s1s2c3 −s1s2s3 s1c2c3 −s1c2s3 c1s2c3 −c1s2s3 c1c2c3 −c1c2s3

s1s2s3 s1s2c3 s1c2s3 s1c2c3 c1s2s3 c1s2c3 c1c2s3 c1c2c3



for θ = (θ1, θ2, θ3) ∈ R3, where ci = cos θi2 and si = sin θi
2 for i = 1, 2, 3.

Generically: The quantum part of a VQA has the following form:

. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ)

Layer 1 Layer 2 Layer L
. . .

More precisely, we can explicitly include the observable we want to measure:
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. . . |Ψ(ϑ)⟩|Ψ0⟩ U1(ϑ) U2(ϑ) UL(ϑ) B

Layer 1 Layer 2 Layer L Observable
. . .

VQAs: The Quantum Part Given a PQC with ϑ ∈ RL we can define a cost function

B(ϑ) = f
(
{|Ψ〉0}, {Bk}, U(ϑ)

)
. (7.46)

Essentially, this is a cost function that involves (some) obsevable quantity - Hermitian operators {Ok}
given input states {|Ψ〉0} and the PQC U(ϑ). Here k ∈ I, where I is some indexed set.

Let ρin := |Ψ〉0〈Ψ|0 (assume norm 1). A common choice is (using Born’s rule) to define the “observable”

function

B(ϑ) =
∑
k∈I

Tr
(
BkU(ϑ)ρinU

†(ϑ)
)
, (7.47)

or more generically

B(ϑ) =
∑
k∈I

fk

(
Tr
(
BkU(ϑ)ρinU

†(ϑ)
))

, (7.48)

for some functions fk.

VQAs: Measurements: The observable function is one that we end up measuring (several times) in

order to construct an empirical estimate of its expectation value 〈B〉ϑ of the observable:

〈B〉ϑ := 〈Ψ(ϑ)|B|Ψ(ϑ)〉 , (7.49)

where |Ψ(ϑ)〉 := U(ϑ)|Ψ0〉. The empirical estimate

E[Bϑ]. (7.50)

This is constructed by measuring the same circuit repeatedly. Out of this we construct a cost function

we would like to minimize:

ϑ∗ := arg min
ϑ
‖E[Bϑ]− 〈B〉ϑ ‖

p
` (7.51)

|Ψ(ϑ)⟩|Ψ0⟩ U(ϑ)

argminϑ ∥E[Bϑ]− ⟨B⟩ϑ ∥
p
ℓ

E[Bϑ]updated ϑ∗

Quantum

w.r.t. B

Classical

VQA: The Classical Part: During the optimization, one uses a finite statistic estimator of the cost

or its gradients.

Essentially we are “training” the VQA by learning the parameters ϑ.
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It is known that for many optimization tasks using information in the cost function gradient can help

in speeding up and guaranteeing the convergence of the optimizer. One of the main advantages of many

VQAs is that often one can analytically evaluate the cost function gradient.

Parameter Shift Rule: Consider a cost function as in Eq. (7.48):

B(ϑ) = Tr
(
BU(ϑ)ρinU

†(ϑ)
)
, (7.52)

(fk = Id, k = 1). Furthermore, let the unitaries read:

U(ϑj) = eıϑjσ
a
j . (7.53)

Then:

∂B(ϑ)

∂ϑj
∼ 1

sinα
(Tr(BU†(ϑ+)ρU(ϑ+))− Tr(BU†(ϑ−)ρU(ϑ−)) (7.54)

where ϑ± = ϑ ± αe. Here ej is a vector having 1 as its j-th element and 0 otherwise. Thus, one can

evaluate the gradient by shifting the l-th parameter by some amount α.

Note that the accuracy of the evaluation depends on the coefficient 1/(2 sinα) since each of the ±α terms

are evaluated by sampling B. This accuracy is maximized at α = π/4. So, the parameter-shift rule looks

like some form of finite difference. However, it evaluates the analytic gradient of the parameter by virtue

of the coefficient 1/(2 sinα). Note that several variations of the parameter shift rule exist [Kungurtsev

et al., 2022, Fig. 1].

It’s hard to train VQAs.

Undecidability conjecture.

I conjecture that actually the situation is worse. VQAs are undecidable.

17



UNDECIDABLE

DECIDABLE

P-SPACE

NP BQPP

Training VQAs: The success of a VQA depends on the efficiency and reliability of the optimization

method used.

As we saw the training can be NP-Hard. Training a VQA one can encounter new challenges:

• huge number of local minima

• barren plateaus

• stochastic environment due to the finite budget for measurements

• hardware noise affecting E[Bϑ]

• restricted qubit connectivity

• statepreparation-and-measurement (SPAM) errors

• ...

This has led to the development of many quantum hardware-aware optimizers, with the optimal choice

still being an active topic of debate. A common choice is the family of SGD (e.g. SPSA).

5. QAOA

Quantum Approximation Optimization Algorithm (QAOA) can be implemented in NISQ devices.

QAOA is an approximation algorithm: it does not deliver the “best” result, but only the “good enough”

result, which is characterized by a lower bound of the approximation ratio.

Interestingly QAOA can be applied to the MaxCut problem via a traverse Ising filed model.

Trotterization: Recall that in the case of AQC we have:

H(s) = (1− s)Hinit + sHfinal. (7.55)

Time evolution under this time-dependent Hamiltonian involves is hard:

U(T ) ∼ exp

(
−ı
∫ t

0

H(w)dw

)
. (7.56)
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We can mitigate this with the Trotterization technique: discretize U(T ) ≡ U(T, 0) into intervals ∆t (in

total T = L∆t) small enough that the Hamiltonian is approximately constant over each interval. Then:

U(T, 0) = U(T, T −∆t)U(T −∆t, T − 2∆t) . . . U(∆t, 0) (7.57)

=

L−1∏
j=0

U((L− j)∆T, (L− j − 1)∆t) (7.58)

=L→∞

L−1∏
j=0

e−ıH[(L−j)∆t]∆t (7.59)

Using the identity

eı(A+B)x = eı(A)xeı(B)x +O(x2) (7.60)

we deduce that

U(T, 0) ≈
p∏
j=1

e{−ı(1−s(j∆t))Hinit∆t}e{−ıs(j∆t)Hfinal∆t}. (7.61)

Thus we can approximate AQC by repeatedly letting the system evolve under Hfinal for s(j∆t) and then

under Hinit for (1− s(j∆t)). In this way we can construct arbitrary unitaries.

QAOA: Combinatorial Optimization: Recall that a combinatorial optimization problem amounts

to finding the n-bit string z that (approximately) satisfies the maximal amount of m constraints Cα,

each of which takes the form

Cα(z) =

{
1 if z satisfies the constraint

0 otherwise.
(7.62)

We wish to find a string z that approximately maximizes the objective function

C(z) =

m∑
α=1

Cα(z) (7.63)

Quantum Analogue: For the quantum analogue of the previous problem we define a diagonal operator:

HC acting on the 2n-dimensional Hilbert space where each bitstring z is a basis vector |z〉.
HC acts on |z〉 as follows:

HC |z〉 = C(z)|z〉 (7.64)

and since C(z) is scalar valued, we can see that each |z〉 is an eigenstate of HC .

Let us view Ĉ as a Hamiltonian and the highest energy eigenstate |z〉 is the solution to the combinatorial

optimization problem, as it gives the highest value of C(z).

Max-Cut: In the case of Max-Cut we have:

C(z) =
1

2

∑
(i,j)∈E(G)

zizj (7.65)
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QAOA at last: QAOA leverages approximate adiabatic quantum computation via Trotterization. We

use two Hamiltonians: The first one is the problem Hamiltonian HC which just by looking at Eq.

(7.65) you should suspect its the Ising Hamiltonian.

The other one is called mixer Hamiltonian which is

HB =

n∑
j=1

σxj (7.66)

The corresponding unitaries we need are:

UC = e−ıγHC (7.67)

UB = e−ıβHB (7.68)

QAOA: Optimization: The goal is to maximize the expression

ML(γ, β) := 〈γ, β|ML|γ, β〉 (7.69)

γ ∈ [0, 2π]L, β ∈ [0, π]L.

and

|γ, β〉 = UC(γL)UB(βL) . . . UC(γ1)UB(β1)|+〉n. (7.70)

Compare with Eq. (7.57). Its basically the same.

. . . |γ, β⟩|+⟩n UC(γL) UB(βL) U1(γ) U1(β) ML

Layer L Layer 1 Observable
. . .

QAOA: Intuition: We begin in an eigenstate of HB and then repeatedly let the system evolve under

HC and HB , alternating between the two.

The approximation increase as L→∞.

We are trying to find

(γ∗, β∗) = arg max
γ,β
‖E[ML]− 〈ML〉 ‖p` (7.71)

In the end we measure |γ, β〉 in the computational basis to get some bitstring z, and evaluate C(z).

We repeat the above steps O(m logm) (m number of constraints) such that we bound C(z) with high

probability.

Key result: QAOA with L = 1 achieves an approximation ratio of rc = C(z)/Cmax = 0.6924 when

performing Max-Cut on 3-regular graphs.
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