
CHAPTER 9

Applications in Financial Services

In this chapter, we want to make a few remarks on the practical aspects of use of what we have seen,

esp. in Chapters 7 and 8, in the financial services industry. Therein, one needs to deal with many more

vendors (i.e., salesmen) than universities (i.e., researchers).

1. Practical aspects of quantum annealers

Outside of many reputable vendors of gate-based quantum computers, there are also numerous ven-

dors of so-called quantum annealers. While there are several quantum annealers across the world in

academic environments, the most well-known vendor is D-Wave Systems. Other vendors that develop

superconducting quantum annealers are Qilimanjaro and Avaqus. Recall, QA is a type of analog quan-

tum computation based on the concept of adiabatic quantum computation (AQC). As such, it is possible

to devise systems that perform AQC with stoquastic Hamiltonians but are not necessarily based on su-

perconducting qubits. Such examples include Pasqal and QuEra that use arrays of Rydberg atoms which

are highly excited atoms with a large distance between the electron and the nucleus. Finally, several

companies manufacture specialized classical hardware (e.g., based on FPGAs) that simulates quantum

annealing, for example Fujitsu.

What is common among the above is that the most obvious use cases and candidate problems to be

attacked by these machines are hard optimization problems. Therefore, similar to companies offering

classical solvers, such as Gurobi, understanding of optimization is crucial for a career in this area.

Note that the applications go beyond optimization, e.g. to machine learning, and we discuss below an

example: QBoost.

1.1. Focus: D-Wave. D-Wave being the first company to file for a patent. D-Wave gained a

lot of notice once multi-qubit quantum tunneling effects were observed experimental and showed the

computational potential it may have.

Currently, the most advanced D-Wave machine is the 5,760-qubit Advantage machine with which the

study King et al. [2023] was performed.

How is performance measured? It is commong to use a metric known as Time-To-Solution (TTS)

when performing benchmarking studies. There, data collected from multiple runs of the QA are used

to compute the probability of finding a ground state solution for the given configuration of (adjustable)

parameters. This probability is:

pTTS :=
of ground state solutions

of total QA runs
. (9.1)

The TTS proper is defined as the expected time to obtain the ground state solution at least once with

success probability α and it is computed as:

TTS = trun
1− logα

1− log pTTS
. (9.2)

Here trun is the annealing time for a single run of the QA and α = 0.99 by default. Scheduling is a

NP-Hard problem and you should expect that TTS scales exponentially with the size of the input N .

In the context of adiabatic quantum optimisation algorithms (Ising model mapping) as well as the

quantum adiabatic theorem, for a problem of size N , quantum optimisers (are hoped to) solve NP-

Hard combinatorial optimisation problems in time proportional to exp(βNγ) as N → ∞, for positive

coefficients β (scaling exponent) and γ.

1

https://www.dwavesys.com/
https://www.qilimanjaro.tech/
https://www.avaqus.eu/home
https://www.pasqal.com/
https://www.quera.com/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.gurobi.com/
https://patents.google.com/patent/WO2005093649A1/en

It should expected that, since scheduling problems are NP-Hard, TTS should scale exponentially with

the problem size N in the asymptotic limit for γ = 1. The value of the β parameter that turns out to

fit the experimental results TTS = T0 expβN , for some constant T0 > 0, ranges between 1.01 and 1.17

depending on the D-Wave machine.

2. More on QUBO

In this section we aim to discuss a few more QUBO formulations of interesting hard problems.

2.1. Graph Partitioning. Consider an undirected graph G = (V,E). The task is to partition the

set of vertices V into two subsets of equal size N/2, such that the number of edges connecting the two

subsets is minimized.

1

2

3

4

5

6

7

8

1

2 5

63

4 7

8

We can directly assign spin variables represented by the graph vertices where x = +1 values mean the

blue class and x = −1 values mean the orange class. The problem is solved by considering the following

cost function:

L(x) = LA(x) + LB(x), (9.3)

where

LA(x) = α

N∑
i=1

xi, (9.4)

a term that provides a penalty term if the number of elements in the blue set is not equal to the number

of elements in the orange set, and

LB(x) = β
∑

(u,v)∈E(G)

1− xuxv
2

, (9.5)

a term that provides a penalty each time an edge connects vertices from different subsets. If β > 0, then

we wish to minimize the number of edges between the two subsets while if β < 0 we want to maximize

this number. If β < 0 is chosen, then it must be small enough so that it is never favorable to violate the

other constraint LA.

2.2. Binary Integer Linear Programming. Consider the binary vector x = (x1 . . . xN) ∈
{0, 1}N . Binary integer linear programming (BILP) amounts to the following problem:

max
x∈{0,1}N

cx

s.t. Ax = b

A ∈ RM×N

b ∈ RM

(9.6)

A variety of problems can be formed as BILPs (for example in the context of banking revenue maximiza-

tion subject to regulating constraints). The cost function L(x) corresponding to the QUBO formulation

is

L(x) = LA(x) + LB(x), (9.7)

2

where

LA(x) = α

m∑
j=1

(
bj −

N∑
i=1

Aijxi

)2

, (9.8)

where α is a constant. Note that LA(x) = 0 enforces the constraint Ax = b. When this is not met, we

get an overall penalty to the objective function. Furthermore,

LB(x) = −β
N∑
i=1

cixi, (9.9)

for β < α another constant. Essentially, the constants α and β are tuning parameter that determines

the relative importance of maximizing the objective function compared to satisfying the constraints.

The condition β < α ensures that the constraints take precedence over the objective function, which is

usually the case in constrained optimization problems. The reason for the minus sign is there since in

QUBOs (naturally) we have a minimization problem.

2.3. Portfolio optimization. One of the fundamental problems in quantitative finance is port-

folio optimization which is part of modern portfolio theory (MPT). A typical portfolio optimization is

formulated as follows. Let N be the number of assets (things you can buy or sell in a market), µi the

expected return of asset i ∈ [N], σij the covariance between the returns of asset i and asset j and R the

target portfolio return. The decision variables are the weights wi ∈ R associated to asset i for all i ∈ [N]

with.

The standard approach here is the Markowitz mean-variance approach. This amounts to the following

quadratic program:

min
w∈RN

N∑
i,j=1

wiwjσij

s.t.

N∑
i=1

wi = 1,

N∑
i=1

wiµi = R.

(9.10)

Intuition. Essentially, this problem amounts to the construction of an optimal portfolio from the set of

all possible assets with known characteristics such as their returns, volatilities, and pairwise correlations.

Realistically, we would expect to be able to select M ≤ N assets from the set of available N assets that

should be the best possible choice according to the criteria set by the constraints.

Quadratic programs of this form are efficiently solvable using a number of quadratic programming solvers

efficiently. However, consider the case where where weights w are discrete; this situation starts resembling

like a NP-Complete problem.

In such a situation Prob. (9.10) can be mapped to a QUBO suitable for QA. This is done as follows.

We define the QUBO objective as:

L(s) =

N∑
i=1

aisi +

N∑
i=1

N∑
j=i+1

bijsisj . (9.11)

In this context

si =

{
1 means asset i is selected,

0 means asset i is not selected.
(9.12)

Then, given the N asset set s = {s1, . . . , sN} find the binary configuration that minimizes the L(s)

subject to the cardinality constraint that can be added via a penalty term Lpen(s). Specifically, the

3

requirement that
∑N
i=1 si = M is encoded via:

Lpen(s) = P

(
M −

N∑
i=1

si

)2

. (9.13)

Furthermore, in Eq. (9.12), the coefficients ai, reflect the asset attractiveness as a standalone (think user

defined hyperparameter). Assets with large expected risk-adjusted returns are commonly rewarded with

negative values for ai while assets with small expected risk-adjusted returns should be penalised with

positive values of ai. Finally, the coefficients bij reflect the pairwise diversification penalties (if positive)

and rewards (if negative) and are derived from the asset pairwise correlations. For all purposes of this

course, assume ai and bij as given.

The total QUBO to be solved is:

min
s∈{0,1}N

Ltotal(s) := L(s) + Lpen(s). (9.14)

The minimization of this QUBO optimizes for the risk-adjusted returns by using the so-called Sharpe

ration which is computed as (r−r0)/σ where r is the expected annualised asset return, r0 is the applicable

risk-free interest rate and σ is the asset volatility.

The higher the Sharpe ratio the better returns relative to the risk taken. Volatility is usually estimated as

the historical annualized standard deviation if the net asset value returns. Finally, expected returns can

be either estimated as the historical returns or derived independently using e.g. Monte Carlo simulations.

3. Quantum Boost

Let us discuss how QBoost is used in the context of Machine Learning (ML). First, let us set up some

notation:

Object Definition

xt ∈ RN vector of N features

yt ∈ {0, 1} binary classification label

{xt, yt}t∈[M] training set

ci(xt) = ± 1
N value of weak classifier i on event t

q := (q1, . . . , qN) vector of binary weights associated with each weak classifier

Table 9.1. Notation

The classification error for sample t is given by the square error(
N∑
i=1

ci(xt)qi − yt

)2

. (9.15)

The total cost function to minimize is the sum of squared errors across the training data:

L(s) =

M∑
t=1

(
N∑
i=1

ci(xt)si − yt

)2

(9.16)

Expanding this out yields a term y2t that does not depend on s and does not influence the minimization

of L (can be absorbed as a constant energy shift). Overfitting can be done by adding a penalty λ > 0.

The objective to minimize in the QBoost agorithm is:

L̃(s) =

M∑
t=1

 N∑
i=1

ci(xt)qi

N∑
j=1

cj(xt)sj − 2yt

N∑
i=1

ci(xt)si

+ λ

N∑
i=1

si (9.17)

=

N∑
i=1

N∑
j=1

Cijqiqj +

N∑
i=1

(λ− 2Ci)si, (9.18)

4

where

Cij :=

M∑
t=1

ci(xt)cj(xt), Ci :=

M∑
i=1

ci(xt)yt.

Remark : the penalty term added here is analogous to LASSO regression method with L1 penalty. This

is sort of ubiquitous in the ML literature. Note that ridge regression with L2 penalty could be chosen

instead.

Next, we need to map the problem to an Ising model. To do so we consider σ to be spin variables by

defining

σ = 2s− 1. (9.19)

The Ising Hamiltonian is then written as:

H =
1

4

N∑
i,j=1

Cijσiσj +
1

2

N∑
i,j=1

Ciσi +

N∑
i=1

(λ′ − Ci)σi, (9.20)

where λ′ := 1
2λ is a rescaled penalty coefficient. QA aims to solve the problem to minimize H and

compute the ground state spin configuration bit-string |s〉, with s ∈ {−1, 1}N . Then, for each new

sample x, the classifier is given as

R(x) =

N∑
i=1

sici(x) ∈ [−1, 1]. (9.21)

Application: QBoost

QA for ML applications has been gaining a lot of popularity (and serves as a business model for a

number of quantum computing startups). It is claimed to have demonstrated performance advantage in

compaerison with algorithms such as binary decision tree-based Extreme Gradient Boosting (XGBoost)

and DNN classifiers on small datasets.

A very interesting application is that of forecasting credit card client defaults. For that one can utilize a

publicly available dataset available from the UCI Machine Learning Repository [307,308]. This dataset

consists of 30,000 samples with binary classifications:

• a client does not default - class 0

• a client does default - class 1

There are N = 23 features (F1, . . . , F23) that are available to extract predictive power from:

• F1: amount of given credit (continuous)

• F2: gender (binary)

• F3: education (discrete)

• F4: marital status (discrete)

• F5: age (discrete)

• F6: repayment status of previous month (discrete)

• F7: repayment status of two months ago (discrete)

• F8-F11: similar (discrete)

• F12: bill amount past month (continuous)

• F13: bill amount two months ago (continuous)

• F14-F17: similar (continuous)

• F18: amount of previous month payment (continuous)

• F19: amount of payment two months ago (continuous)

• F20-F23: similar (continuous)

Having these features, the next step is to construct the weak classifiers. For that each feature can be

used separately as an input into a logistic regression classifier with the goal to make a binary prediction:

−1/N for class 0 and +1/N for class 1. That, of course, would require splitting the data to a training

and validation test (e.g., 0.7 training and 0.3 validation). A rule for determining the output can be set

5

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

to be a majority vote: the prediction of the (strong) classifier is given by the sum of the of the weak

classifiers with values in {−1,+1} (as required by QBoost).

It can be argued that QBoost provides an improvement on this approach by finding an optimal configu-

ration of the weak classifiers.

Such a simple implementation can lead to results such as the ones in Fig. 9.2 (you are more than welcome

to try this on your own) where QBoost shows what some people call “performance” advantage. While

several, much more sophisticated classical classifiers exist, there is no fundamental reason that the same

argument cannot be applied for quantum classifiers as well.

Accuracy Precision Recall

GradBoost 0.83 0.69 0.35

MLP 0.83 0.69 0.35

QBoost 0.83 0.71 0.33

Table 9.2. Caption

4. Warm-starting QAOA

Recall, that we have discussed the Quantum Approximate Optimization Algorithm (QAOA) Farhi et al.

[2014] last time. We discussed that QAOA This algorithm encodes a combinatorial optimization problem

in a Hamiltonian HC whose ground state is the optimum solution. The QAOA first creates an initial

state which is the ground state of a mixer Hamiltonian HM where a common choice is

HM = −
N∑
i=1

σxi , (9.22)

with ground state being |+〉⊗n. Then, recall, for depth-L QAOA, we apply L times the unitary UQAOA =

UC(γ)UB(β) defined as:

UC(γ) := e−ıγHC (9.23)

UB(β) := e−ıβHM . (9.24)

The result is:

UQAOA|+〉⊗n = |γ, β〉. (9.25)

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create a trial state which

minimizes the energy of the problem Hamiltonian HC .

While a very promising algorithm, initially it lacked any theoretical guarantees on its performance ratio

and for certain problem instances of interest (e.g. Max-Cut) it cannot, for constant L, outperform

the classical Goemans-Williamson randomized rounding approximation (which for MAXCUT finds cuts

whose expected value is an α fraction of the global optimum, for 0.87856 < α < 0.87857, with the

expectation over the randomization in the rounding procedure).

While several improvements of the QAOA have been developed in the literature, we will focus here on

warm-starting QAOA Egger et al. [2021].

Relaxations. QUBOs have already been discussed a lot. A common formulation is:

min
x∈{0,1}n

xTQx+ µTx. (9.26)

where x is a vector of n binary decision variables, Q ∈ Rn×n a symmetric matrix, and µ ∈ Rn a vector.

Since for binary variables x2i = xi, µ can be added to the diagonal of Σ, and in the following, we only

add µ when it simplifies the notation in the given context. Note that, as discussed, practically any

mixed-integer linear program can be encoded in a QUBO it is automatically NP-Hard.

6

If Q is positive semidefinite, there exists a trivial continuous relaxation of the QUBO above:

min
x∈[0,1]n

xTQx (9.27)

is a convex quadratic program and the optimal solution c∗ of the continuous relaxation is easily obtainable

with classical optimizers. However, if Q is not positive semidefinite (and in many applications of interest

there is no reason to be) one can obtain another continuous relaxation, the semidefinite program (SDP):

maxY ∈Sn tr(QY)

diag(Y) = 111

Y � 0,

(9.28)

where Sn×n denotes the set of n×n symmetric matrices, 111 is an n-vector of ones, and Y � 0 denotes that

Y must be positive semidefinite. Given the optimal solution Y ∗ to the SDP above, there exist several

approaches to generating solutions1 of the corresponding (QUBO), often with approximation guarantees.

Furthermore, quantum computers offer the prospect of some speed-ups in solving SDPs (not discussed

in these lectures).

Warm-starting QAOA. The solutions of either continuous-valued relaxation discussed above can be

used to initialize VQAs: this is known as warmstarting them Gondzio [1998]. Let us focus on how to

warm-start the QAOA Farhi et al. [2014].

In QAOA, each decision variable xi of the discrete optimization problem corresponds to a qubit by the

substitution xi = (1− si) /2. Each si is replaced by a spin operator σi to transform the cost function to a

cost Hamiltonian HC . Then, after the procedure described initially, that is utilizing the unitary UQAOA,

one performs the final measurement which can be considered as a randomized rounding. Warm-starting

amounts to replacing the initial equal superposition state |+〉⊗n with a state

|φ∗〉 =

n−1⊗
i=0

R̂y (θi) |0〉n (9.29)

which corresponds to the solution c∗ of the relaxed Problem (9.27). Here, R̂Y (θi) is a θi-parametrized

rotation around the y-axis of the qubit (see Fig. 9.1) and θi := 2 arcsin(
√
c∗i) for c∗i given as the solution

of QUBO (9.27).

Additionally, the mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian

is

Hws
M =

n∑
i=1

Hws
M,i (9.30)

where

Hws
M,i =

(
2c∗i − 1 −2

√
c∗i (1− c∗i)

−2
√
c∗i (1− c∗i) 1− 2c∗i

)
(9.31)

which has Ry(θi)|0〉 as ground state. One can show that the ground state of Hws
M is |φ∗〉 with energy

−n. Therefore, WS-QAOA applies at layer k a mixing gate which is given by the time-evolved mixing

Hamiltonian UM (β) = e−ıβH
ws
M .

For technical reasons Egger et al. [2021] one has to actually modify the definition of θi as

θi = 2 arcsin
(√

c∗i
)

if c∗i ∈ [ε, 1− ε]
θi = 2 arcsin(

√
ε) if c∗i ≤ ε

θi = 2 arcsin(
√

1− ε) if c∗i ≥ 1− ε.

where ε ∈ [0, 0.5] and the mixer Hamiltonian HM is adjusted accordingly. The parameter ε provides a

continuous mapping between WS-QAOA and standard QAOA since at ε = 0.5 the initial state is the

equal superposition state and the mixer Hamiltonian is the X operator. If all c∗i ∈ (0, 1) or ε > 0,

WS-QAOA converges to the optimal solution of (QUBO) as the depth L approaches infinity as does

standard QAOA.

1As a matter of facr, a classical laptop can solve instances of (SDP) relaxations of QUBO, where Q has 1013.

7

Figure 9.1. The initial state is given by the red segment. The yellow path shows the

evolution of the quantum state starting at |0〉 to Ry(−θi)Rz(−β)Ry(2θi) for β = π/2.

This directly follows from (surprise) the adiabatic theorem and the fact that we start in the ground state

of the mixer which overlaps with all computational basis states including the optimal solution.

For large enough L, WS-QAOA therefore the adiabatic evolution transforming the ground state of the

mixer into the ground state of HC as expected. The speed of the adiabatic evolution is limited by the

spectral gap of the intermediate Hamiltonians as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution (larger terminal time

T) implies a larger L. The idea of WS-QAOA is to speed-up this evolution by optimizing the parameters

instead of following a fixed annealing schedule.

Several other variations of WS-QAOA have been studied, for example “rounded warm-started” QAOA.

Such a technique is very appealing for application on NISQ devices for combinatorial optimization prob-

lems.

Below we quote a nice experimental demonstration from Egger et al. [2021].

There, the authors investigate the role of the warm-start mixer operator Ĥ
(ws)
M by replacing it with the

standard mixer −
∑n−1
i=0 X̂i while using the initial state given by the continuous solution c∗. Under these

conditions the energy of the optimized state does not converge to the minimum energy, see blue triangles

in Fig. 9.2(b). The probability of sampling the optimal discrete solution is between warm-start and

standard QAOA but depends heavily on the initial point given to COBYLA, see Fig. 9.2(a). These

results further justify the use of the modified mixer in WS-QAOA.

They even proceed to further illustrate the advantage of a warm-starting QAOA at low depth by solving

250 random portfolio instances with warm-started and standard QAOA, both at depth L = 1. There the

standard QAOA produces variational states that poorly approximate the ground state, see the histogram

of E∗cold in Fig. 9.3(a). However, WS-QAOA produces optimized variational states that are much closer

to the minimum energy of each problem Hamiltonian. Furthermore, we find that WS-QAOA tends to

produce better solutions when the overlap d∗T c∗/B between the optimal solutions to the discrete and

relaxed problems is closer to 1.

8

Figure 9.2. (a) Probability to sample the optimal state |d∗〉 from the optimized trial

state |ψ∗〉 and (b) energy of |ψ∗〉 for warm-start and standard QAOA at different depths

for n = 6 assets and q = 2. The optimal discrete and continuous solutions are d∗ =

(0, 0, 1, 1, 1, 0) and c∗ ' (0.17, 0, 0.97, 0.73, 1.0, 0.14), respectively. QAOA is run ten

times with different initial random guesses for (β, γ) chosen uniformly from ±2π. The

thick lines show the median of the ten runs while the shaded areas indicate the 25% and

75% quantiles. The gray dashed line shows E0.

Figure 9.3. Improvement of depth-one WS-QAOA over standard QAOA for 250 ran-

dom portfolio instances with q = 2 (q controls the risk-return trade-off).

5. Asset Management and Monte Carlo Simulations

Derivative pricing using a quantum computer.

What are derivatives and why one would be interested in using a quantum computer?

Short answer: derivatives are financial instruments that make some people rich and quantum computers

can do things (in principle) quadratically faster. Use this notebook.

9

https://github.com/fabiosanches13/qmc_derivative_pricing/blob/main/quantum_derivative_pricing.ipynb

Bibliography

Daniel J Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum optimization. Quantum,

5:479, 2021.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm.

arXiv preprint arXiv:1411.4028, 2014.

Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-plane scheme. Mathematical

Programming, 83(1-3):125–143, January 1998. doi: 10.1007/bf02680554. URL https://doi.org/
10.1007/bf02680554.

Andrew D King, Jack Raymond, Trevor Lanting, Richard Harris, Alex Zucca, Fabio Altomare, Andrew J

Berkley, Kelly Boothby, Sara Ejtemaee, Colin Enderud, et al. Quantum critical dynamics in a 5,000-

qubit programmable spin glass. Nature, pages 1–6, 2023.

11

https://doi.org/10.1007/bf02680554
https://doi.org/10.1007/bf02680554

	Chapter 9. Applications in Financial Services
	1. Practical aspects of quantum annealers
	2. More on QUBO
	3. Quantum Boost
	4. Warm-starting QAOA
	5. Asset Management and Monte Carlo Simulations

	Bibliography

