
CHAPTER 5

Harmonic Analysis 101

In this lecture, we introduce the quantum Fourier transform, which is O((logN)2), i.e., exponentially

faster than the classical fast Fourier transform in O(N logN). As is perhaps familiar, the simple intuition

for the classical Fourier transform is basically as a change of basis, or perhaps a duality transformation.

Typically we think of it as taking us from the original function domain to its corresponding frequency

domain, where certain properties, such as which frequencies are present in a signal, are easier to analyze.

This is directly translated to the quantum Fourier transform, which is a change of basis from the com-

putational basis to the Fourier basis. For example, as we will see below, in the simplest case of one qubit

the quantum Fourier transform is simply the Hadamard gate. Which we have already seen is a change of

basis from the computational basis to the Hadamard basis |±〉. Before we get into the quantum Fourier

transform, we will begin with the classical case, and in particular try to explain some harmonic analysis

in general.

Time

Frequency

Harmonic analysis as we need it requires discrete samples and finite fields. The corresponding, perhaps

seemingly obscure parts of harmonic analysis have also led to classical breakthroughs, such as multi-

plication of n-bit integers in time O(n log n) [Harvey and Van Der Hoeven, 2021] and multiplication of

polynomials over finite fields [Harvey and Van Der Hoeven, 2022] in the same time. The idea is that

we can think of the Fourier transform in a very general way as a function on a group or over a finite

field. The only difference between things like the full continuous Fourier transform, the discrete-time

Fourier transform and the discrete Fourier transform are then simply the choice of group. For a very

nice introduction to Harmonic analysis on finite groups, see Peyré [2020].

1

1. Discrete Fourier Transform

The discrete Fourier transform (DFT) maps an N -vector x of complex numbers to an N -vector X of

complex numbers:

Xk =

N−1∑
j=0

xj · e
2πjki
N , (5.1)

up to a normalization 1√
N

. (This is sometimes called the analysis formula.) Let us assume N = 2n

throughout, where n is a constant.

One way to think of the N -vector x is to see those as samples of a periodic function with period T , i.e.,

f(t) = f(t + T). In particular, one would sample f uniformly at points j∆t, where ∆T = T/N and

j = 0, 1, ..., N − 1.

Alternatively, one could see discrete Fourier transform as a function on a finite cyclic group Gq =

{1, g, g2, . . . , gq−1} ∼= Z/qZ. A simple representation of the elements of this group is as qth roots of

unity, gn = exp
(

2πin
q

)
, with n = 0, . . . , q−1, where the group multiplication is simply ordinary complex

multiplication. By visualizing this group action on the unit circle we can see that it is the rotational

symmetry group of the q-polygon.

For any group G, and especially for cyclic groups Zq, it may be tempting to identify the group with its

elements g ∈ G and consider f(g) only, or to identify the cyclic groups Zq with the set {0, . . . , q−1} and

modulo q addition. One could do much better, however, if one considers the group’s symmetries.

Alternatively, one could see the analysis formula (5.1) as a matrix equation X = Fx. Thus, a discrete

Fourier transform can be expressed as a so-called Vandermonde matrix (Sylvester, 1867),

F =
1√
N


ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 (5.2)

where ωm·nN = e−i2πmn/N and the mn is the usual product of the integers.

Notice that:

• because ω depends only on the product of frequency m, and position n, the DFT F is symmetric.

Notice that it is also unitary: F−1 = F∗ and |det(F)| = 1.

• X is the inner product of x with the m-th row of F. Conversely, f is a linear combination of

the columns of F, where the mth column is weighted by Xm.

• the vectors um =
[
e
i2πmn
N

∣∣∣ n = 0, 1, . . . , N − 1
]T

form an orthogonal basis over the set of N-

dimensional complex vectors.

• F2 reverses the input, while F4 = I. The eigenvalues satisfy: λ4 = 1 and thus are the fourth

roots of unity: +1,−1,+i, or − i.

1.1. The Hadamard Transform. We can define the 1 × 1 Hadamard transform H0 = 1 as the

identity, and then define Hm for m > 0 by:

Hm =
1√
2

[
Hm−1 Hm−1
Hm−1 −Hm−1

]
.

Other than the normalization, the Hadamard matrices are made up of 1 and -1. Notice that Hadamard

H1 =
1√
2

[
1 1

1 −1

]
2

is a discrete Fourier transform; indeed, we have ω0·0
1 = ω0·1

1 = ω1·0
1 = e0 = +1 and ω1·1

1 = e−iπ = −1. As

a further example, the next Hadamard matrix is

H2 =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .
Note that this is not a DFT as defined by (5.2).

Notice that classically, we can compute the fast Hadamard transform algorithm in O(n log n) while

performing only sign-flips. Quantumly, the Hadamard transform can be computed in time O(1), in

many commonly used gate sets.

1.2. The z-Transform. If you know the z-transform, notice that the Xk can also be seen as

evaluation of the z-transform X(z) =
∑N−1
j=0 xjz

−j at points ω−jN , i.e., Xj = X(z)z=ω−j
N

.

1.3. Examples of Discrete Fourier Transform. Let us see:

F0 = H0 = 1

F1 = H1 =
1√
2

[
1 1

1 −1

]

F2 =
1√
3

1 1 1

1 ω1·1
3 ω1·2

3

1 ω2·1
3 ω2·2

3


While the omega notation may obscure the nature of the DFT, see that the column correspond to passes

along the unit circle, clockwise, expressed in the corresponding complex number (e.g., 1, −i, −1, i for

F3) at varying frequency (e.g., 0, 1, 2, 3 for F3):

F3 =
1√
4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

.

Exercise 5.1. Visualise F3, F4 on the unit circle.

Let us further consider some simple examples:

1√
4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i




1

1

1

1

 =


2

0

0

0

 (5.3)

1√
4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i




1

−i
−1

i

 =


0

0

0

2

 (5.4)

1√
4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i




0

1

0

1

 =


1

0

−1

0

 (5.5)

3

2. Fast Fourier Transform

2.1. The Many Fast Fourier Transforms. A straightforward implementation of DFT as a

matrix-vector product requires O(N2) operations. In the so-called fast Fourier transform (Cooley and

Tukey, 1965), one requires only O(N log2N) = O(2nn) operations. There are a number of variants, all

based on the divide-and-conquer approach. As we assume N = 2n, we will present a variant known as

the radix-2 decimation in time (DIT) algorithm.

This speedup is achieved by this variant of the divide-and-conquer approach, where we consider subsets

of the initial sequence, take the DFT of these subsequences, and reconstruct the DFT of the original

sequence from the results on the subsequences. One option is based on the following insight:

Xk =
1√
N

N−1∑
j=0

xj · e
2πjki
N (5.6)

=
1√
N

 ∑
even j

xj · e
2πjki
N +

∑
odd j

xj · e
2π(j−1)ki

N

 (5.7)

=
1√
2

 1√
N/2

∑
even j

xj · e
2π(j/2)ki
N/2

+

 1√
N/2

∑
odd j

xj · e
2π(j−1)/2ki

N/2

 (5.8)

The divide-and-conquer approach can be illustrated on N = 16 with the following cartoon.

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X0

X8

X4

X12

X2

X10

X6

X14

X1

X9

X5

X13

X3

X11

X7

X15

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

ω0·0
16

ω1·0
16

ω2·0
16

ω3·0
16

ω4·0
16

ω5·0
16

ω6·0
16

ω7·0
16

ω0·1
16

ω1·1
16

ω2·1
16

ω3·1
16

ω4·1
16

ω5·1
16

ω6·1
16

ω7·1
16

ω0·0
8

ω1·0
8

ω2·0
8

ω3·0
8

ω0·1
8

ω1·1
8

ω2·1
8

ω3·1
8

ω0·0
8

ω1·0
8

ω2·0
8

ω3·0
8

ω0·1
8

ω1·1
8

ω2·1
8

ω3·1
8

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

ω0·0
4

ω1·0
4

ω0·1
4

ω1·1
4

If you know the z-transform, you should see that X(z) =
∑N−1
j=0 xjz

−j =
∑r−1
l=0

∑
j∈Il xjz

−j for some

partition I of {0, 1, . . . , N − 1} into r subsets, and that one can also normalise the terms. This way, one

can define a variety of recursions similar to the one above, as long as the subset are chosen to be similar

to the initial sequence in terms of their periodicity. This is very nicely explained in Duhamel and Vetterli

[1990].

4

2.2. Fast Fourier Transform as a Factorization. Alternatively, Camps et al. [2021] sees the

Fast Fourier Transform as a certain matrix factorization. This is both important to understand FFT,

but also to understand the QFT later. In particular, the 2n × 2n DFT matrix Fn can be factored as:

F = PnA(0)
n A(1)

n · · ·A(n−1)
n , (5.9)

where,

• Pn is some permutation matrix

• A
(k)
n = In−k−1 ⊗Bk+1,

• Bk+1 = 1√
2

[
Ik Ik
Ωk −Ωk

]
with Ik the k × k identity matrix

• Ωk := Ω2k is a 2k × 2k diagonal matrix:

Ω2k :=


ω0
2k+1

ω1
2k+1

. . .

ω2k−1
2k+1

 , (5.10)

where ω2k+1 is e
−2πi

2k+1 as before.

Notice that each matrix A
(i)
n has two non-zero elements on every row. Consequently, the matrix-vector

product A
(i)
n x can be computed in O(2n) operations, resulting in O(2nn) operations, when one includes

the permutation.

3. Quantum Fourier Transform

In general, F is an N×N unitary matrix, and thus we can implement it on a quantum computer as an n-

qubit unitary for N = 2n. As such, it maps an N -dimensional vector of amplitudes to an N -dimensional

vector of amplitudes. This is called the quantum Fourier transform (QFT). Shor [1994], Kitaev [1995]

presented the first polynomial, O(n2) quantum algorithms for QFT over certain finite fields and arbitrary

finite Abelian groups, respectively. This is exponentially faster than the classical fast Fourier transform,

which takes O(N logN) steps.

Recall that the DFT is:

Xk =
1√
N

N−1∑
j=0

xj · e
2πjki
N .

In contrast, the QFT on an orthonormal basis |0〉 , |1〉 , . . . , |N − 1〉 is a linear operator:

|j〉 → 1√
N

N−1∑
k=0

e
2πjki
N |k〉 .

An alternative representation of the QFT utilizes the product form:

|j1, j2, . . . , jn〉 →
(
|0〉+ e2πi 0.jn |1〉

) (
|0〉+ e2πi 0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi 0.j1j2···jn |1〉

)
2n/2

,

5

where |j1, j2, . . . , jn〉 is a binary representation of a basis state j and 0.j1j2 · · · jn is a notation for binary

fraction j1/2 + j2/4 · · · jn/2n+1. This is actually easy enough to derive:

|j〉 → 1√
N

N−1∑
k=0

xj · e
2πjki
N |k〉 (5.11)

1

2n/2

2n−1∑
k=0

e
2πjki
2n |k〉 (5.12)

1

2n/2

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

e2πj(
∑n
l=1 kl2

−l)i |k1k2 . . . kn〉 (5.13)

1

2n/2

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

n⊗
l=1

e2πjkl2
−li |kl〉 (5.14)

1

2n/2

n⊗
l=1

[
1∑

kl=0

e2πjkl2
−li |kl〉

]
(5.15)

1

2n/2

n⊗
l=1

[
|0〉+ e2πj2

−li |1〉
]

(5.16)

A simplistic illustration of the quantum circuit for QFT, omitting swaps at the end and normalization:

· · ·

· · · · · ·

· · · · · · ...

. ...
...

...

· · · · · · · · ·

· · · · · · · · ·

|j〉

H R2 R3 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Its derivation is very nicely given in Camps et al. [2021], using the framework of matrix decompositions

above. Instead of a proper derivation, let us consider the workings of the circuit step by step. The key

to its understanding is the phase kickback, which we have seen earlier.

Applying the Hadamard gate to the first qubit of the input state |j1 . . . jn〉 gives

1

21/2
(
|0〉+ e2πi 0.j1 |1〉

)
|j2 . . . jn〉 (5.17)

since e2πi 0.j1 equals +1 when j1 = 0 and equals −1 when j1 = 1. We define a unitary gate Rk as

Rk =

(
1 0

0 e2πi/2
k

)
(5.18)

The controlled-R2 gate applied on the first qubit, conditional on j2, now gives

1

21/2
(
|0〉+ e2πi 0.j1j2 |1〉

)
|j2 . . . jn〉 (5.19)

Applying further the controlled-R3, R4 ... Rn gates, conditional on j3, j4 etc., we get

1

21/2
(
|0〉+ e2πi 0.j1j2...jn |1〉

)
|j2 . . . jn〉 (5.20)

6

Next we perform a similar procedure onto the second qubit. The Hadamard gate produces the state

1

22/2
(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2 |1〉

)
|j3 . . . jn〉 (5.21)

and the controlled-R2 through Rn−1 gates yield the state

1

22/2
(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2...jn |1〉

)
|j3 . . . jn〉 (5.22)

We continue this procedure for each qubit, obtaining a final state

1

2n/2
(
|0〉+ e2πi 0.j1j2...jn |1〉

) (
|0〉+ e2πi 0.j2...jn |1〉

)
. . .
(
|0〉+ e2πi 0.jn |1〉

)
(5.23)

Eventually, we use the SWAP operations to reverse the order of the qubits to obtain the state in the

desired product form

1

2n/2
(
|0〉+ e2πi 0.jn |1〉

) (
|0〉+ e2πi 0.jn−1jn |1〉

)
. . .
(
|0〉+ e2πi 0.j1j2...jn |1〉

)
(5.24)

Thus, we have clearly used at most O(n2) gates.

3.1. Even Faster QFT. Cleve and Watrous [2000], Hales and Hallgren [2000], and others improved

this to O(n log n) depth, if one allows for some error. This is based on the realization that Rs for s� log n

are very close to the identity and can be omitted.

7

Bibliography

Daan Camps, Roel Van Beeumen, and Chao Yang. Quantum fourier transform revisited. Numerical

Linear Algebra with Applications, 28(1):e2331, 2021.

R. Cleve and J. Watrous. Fast parallel circuits for the quantum Fourier transform. In Proceedings 41st

Annual Symposium on Foundations of Computer Science, pages 526–536, 2000. doi: 10.1109/SFCS.

2000.892140.

Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: a tutorial review and a state of the art.

Signal processing, 19(4):259–299, 1990.

Lisa Hales and Sean Hallgren. An improved quantum Fourier transform algorithm and applications.

In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 515–525. IEEE,

2000.

David Harvey and Joris Van Der Hoeven. Integer multiplication in time o(n log n). Annals of Mathe-

matics, 193(2):563–617, 2021.

David Harvey and Joris Van Der Hoeven. Polynomial multiplication over finite fields in time o(n log n).

Journal of the ACM (JACM), 69(2):1–40, 2022.

A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem, 1995.

Gabriel Peyré. The discrete algebra of the Fourier transform. 2020. A draft textbook at https:
//mathematical-tours.github.io/daft-sources/DAFT-EN.pdf.

Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings

35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.

9

https://mathematical-tours.github.io/daft-sources/DAFT-EN.pdf
https://mathematical-tours.github.io/daft-sources/DAFT-EN.pdf

	Chapter 5. Harmonic Analysis 101
	1. Discrete Fourier Transform
	2. Fast Fourier Transform
	3. Quantum Fourier Transform

	Bibliography

