
CHAPTER 4

Quantum Algorithms I

1. What we have seen so far?

Quantum algorithms resemble randomized algorithms, except probability amplitudes are complex. This

makes it possible to work with interference. Reversibility of quantum computing (modulo noise) means

one has to use the interference to pick out the solution of a functional problem. This solution needs

to be represented already in some early superposition, and then see its complex probability amplitude

amplified.

2. Introduction

Figure 4.1. All successful quantum algorithms resemble a boa constructor that ate an elephant.

Quantum algorithms ideally have only a modest amount of input. Typically, one uses an initial state

with only a single complex probability amplitude, whose magnitude squares is 1. We can assume without

loss of regularity that this corresponds to the basis state of all zeros. Often, people assume that the

input is “magically made available” via oracles – but that is often “magical thinking”. Often, one loads

the input via controlled rotations, one scalar at a time.

Quantum algorithms then construct a maximally-entangled state on q qubits, whose representation

requires a 2q complex probability amplitudes. (In order for the state to be maximally entangled, the

complex probability amplitudes have to be equal.) One can see the large entangled state as a root of

a large tree, where in the leaves, one applies Hadamard gates to individual qubits, and in the non-

leaf nodes, one applies CNOT. Then, applying a single-qubit gate may change all exponentially-many

complex probability amplitudes in parallel, at a unit cost in terms of the depth of the quantum circuit.

Finally, the output needs to be very simple. Clearly, the measurement ends up with a basis state,

depending on the corresponding complex probability amplitude. In some sense, one may wish the output

were only a single complex probability amplitude whose magnitude squares is 1. This is to be seen from

the sample complexity of parameter estimation in multivariate distributions: if we expect a non-trivial

superposition on the output, we will need very many copies of the circuit and very many collapsing

measurements to estimate the output state. Often, one employs some classical post-processing.
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3. A View from Theoretical Computer Science

3.1. Definitions. First, let us introduce some more complexity classes:

In the definition of Aaronson et al. [2023]: FBPP, resp. FQPP is the class of polynomially-bounded

relations R ⊆ {0, 1}∗ × {0, 1}∗ for which there exists a polynomial-time randomized, resp. quantum

algorithm A such that for all x for which there exists a y with (x, y) ∈ R and all ε > 0,

P[(x,A(x, 01/ε)) ∈ R] > 1− ε,

where the probability is over A’s outputs.

In the definition of Aaronson et al. [2023]: FP/rpoly, resp. FBQP/qpoly is the class of polynomially-

bounded relations R ⊆ {0, 1}∗ × {0, 1}∗ for which there exists a polynomial-time deterministic classical

algorithm A, resp. a polynomial-time quantum algorithm Q, a polynomial p(n,m), and an infinite

list of advice distributions {Dn,m}n,m≥1, where Dn,m is supported on
(
p(n,m)

)
, resp. advice states

{|ψn,m〉}n,m≥1, where |ψn,m〉 is on p(n,m) qubits, such that for all x for which there exists a y such that

(x, y) ∈ R and all m,

Pr∼Dn,m
[(x,A(x, 0m, r)) ∈ R] > 1− 1

m
,

resp.

P[(x,Q(x, 0m, |ψn,m〉)) ∈ R] > 1− 1

m
.

If you rely on your circuit calling an oracle, you often typically cannot prove any “usual” separation

between complexity classes, e.g., BPP 6= BQP. You can prove only weaker “relativized” results, known

as “oracle separations”. The strongest results consider unstructured, random oracles. In the classi-

cal/quantum random oracle model of Boneh et al. [2011], a random function H is chosen at the beginning,

anyone can classically/quantumly access H, i.e., apply a unitary |x〉 |y〉 7→ |x〉 |y ⊕H(x)〉.

3.2. Results. Bennett et al. [1997] show that relative to an oracle chosen uniformly at random with

probability 1 an NP-Complete problem cannot be solved on a quantum Turing machine (QTM) in time

o(2n/2). Yamakawa and Zhandry [2022] show that relative to a random oracle with probability 1, there

are NP search problems solvable by BQP machines but not BPP machines. We will revisit the results

of Yamakawa and Zhandry later, in the chapter on security, because the same paper also shows that

relative to a random oracle with probability 1, there exist functions that are one-way, and even collision

resistant, against classical adversaries but are easily inverted quantumly.

From the point of view of Theoretical Computer Science, the situation in decision problems is somewhat

dire: We do not know any non-relativized separation between P, BPP, and BQP. (Notice that with

non-linear quantum mechanics Abrams and Lloyd [1998], we could actually solve NP-Complete and

#P-Complete problems.)

In functional problems, the situation is somewhat better. In February 2023 Aaronson et al. [2023] have

shown FP 6= FBPP, unconditionally, and FBQP/qpoly 6= FBQP/poly. Notice that the FBQP/qpoly

refers to a quantum advice, not to an oracle.

4. Our first Quantum Algorithm: Deutsch–Jozsa

In the so-called Deutsch–Jozsa problem, we have

• a dimension n

• a black-box function f(x) : {0, 1}n → {0, 1} that has a rather unusual property: either it is a

constant function (there is y ∈ {0, 1} such that for all x ∈ {0, 1}n, the output is y) or balanced

(for precisely 2n−1 inputs, the output is 0, and for precisely 2n−1 inputs, the output is 1)

The decision version of the problem asks whether the unknown function f is constant. It is clear that

classically, one may need to perform 2n−1 + 1 oracle calls in the worst-case, but that there would be

excellent randomized algorithms. Notice that for n = 1, one asks whether f(0) + f(1) mod 2 is zero.

Let us illustrate the algorithm of Deutsch [1985] for n = 1:
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(1) creates an initial, two-register state |0〉 |1〉
(2) apply Hadamard transform to both registers: 1

2

∑1
x=0 |x〉 (|0〉 − |1〉)

(3) apply the function via the oracle to obtain 1
2

∑1
x=0 |x〉 (|0⊕ f(x)〉 − |1⊕ f(x)〉)

(4) apply the Hadamard transform on the first register again:

1

2

1∑
x=0

(−1)f(x)

[
1√
2

1∑
y=0

(−1)x⊕y |y〉

]
=

1∑
y=0

[
1

2

1∑
x=0

(−1)f(x)(−1)x⊕y

]
|y〉

(5) obtain y by measuring the first register. The probability of measuring |0〉 is
∣∣∣ 12 ∑1

x=0(−1)f(x)
∣∣∣2,

which evaluates to which evaluates to 1 for constant functions (constructive interference) and

to 0 for balanced functions (destructive interference).

We have used 1 query to the oracle. This can be generalized to any n, without increasing the number of

queries!

5. First Few Tricks

If the algorithm seems hard to parse, do not despair. There are a few insights that will help us elucidate

its workings:

• the Boolean group

• the oracle

• the Hadamard transform

• amplitude amplification.

We will also introduce the phase kickback, which we will need later.

5.1. Artihmetics modulo 2. First, let us consider the artihmetics modulo 2 and its relationship

to the XOR operation (⊕, “must have one or the other but not both”). In n = 1 we have seen

(0 + 1) mod 2 = 1 mod 2 = 1 = (0⊕ 1) and

(1 + 1) mod 2 = 2 mod 2 = 0 = (1⊕ 1).

Beyond n = 1 the binary inner product � of bitvectors x, y ∈ {0, 1}n is x1y1 + · · · + xnyn mod 2 =

x1y1 ⊕ · · · ⊕ xnyn, i.e., essentially counting ones that appear at the corresponding positions in two

bitstrings, modulo 2, and thus suggesting whether the count is odd or even.

5.2. The Oracle. Next, let us consider the oracle. One assumes that for a function f , there is an

oracle Uf that maps |x〉 |y〉 → |x〉 |y ⊕ f(x)〉, where ⊕ denotes the XOR operation (or addition modulo

2). This can be simplified to Uf |x〉 = (−1)f(x) |x〉. Clearly, |x〉 |0〉 → |x〉 |f(x)〉. Either way, this is a

reversible operation and can be implemented in a unitary.

In the case of Boolean function f on n = 1 bits, one can think of this as a CNOT gate controlled by the

value of f(x). In the top-left corner, you have I (the identity) for f(0) = 0 and σx (flip) for f(0) = 1.

Similarly in the bottom-right corner, you have I (the identity) for f(1) = 0 and σx (flip) for f(1) = 1.

Uf =


1− f(0) f(0) 0 0

f(0) 1− f(0) 0 0

0 0 1− f(1) f(1)

0 0 f(1) 1− f(1)


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5.3. Amplitude Amplification. In a way, the Deutsch–Jozsa algorithm also demonstrates the

significance of allowing quantum amplitudes to take both positive and negative values. In the Qiskit

Textbook and many other sources, this is illustrated starting with an interference experiment (cf. Young’s

double-slit interferometer, 1803): a particle can travel from the source to an array of detectors through

two slits. Each detector has a probability of observing a particle that depends on the phases of the

incoming waves. Same phases increase the probability (constructive interference); very different phases

reduce the probability (destructive interference). One can consider 2n possible paths x and 2n possible

detectors y, both labelled by bitstrings. The phase accumulated at detector x along a path y equals

C(−1)f(x)+x·y, where x · y is the binary inner product and C is a normalizing constant. The probability

of a particle at detector y is P(y) = |C
∑
x(−1)f(x)+x·y|2 with C = 2−n.

Now let us consider the probability of observing an all-zero string y, which is

|2−n
∑
x

(−1)f(x)+x·y|2 = |2−n
∑
x

(−1)f(x)+0|2,

in the two cases of the promise problem:

• if the f(x) = c, then the probability is |2−n
∑
x(−1)c|2 = 1

• if the f(x) is balanced, then the probability is zero |2−n
∑
x(−1)f(x)|2 = 0, because the alter-

nating sign will lead to a cancellation of the terms.

Exercise 4.1. Plot a diagram of the double-slit experiment and the 2n detectors and the inference

pattern for some n ≥ 8.

5.4. The Hadamard Transform. We have seen the Hadamard gate:

H(|0〉) =
1√
2
|0〉+

1√
2
|1〉 =: |+〉 (4.1)

H(|1〉) =
1√
2
|0〉 − 1√

2
|1〉 =: |−〉 (4.2)

H(|+〉) = H

(
1√
2
|0〉+

1√
2
|1〉
)

=
1

2

(
|0〉+ |1〉

)
+

1

2

(
|0〉 − |1〉

)
= |0〉 (4.3)

H(|−〉) = H

(
1√
2
|0〉 − 1√

2
|1〉
)

=
1

2

(
|0〉+ |1〉

)
− 1

2

(
|0〉 − |1〉

)
= |1〉 (4.4)

without really understanding it.

First, notice that for an n-qubit state |k〉, the application of Hadamards qubit-wise yields:

H⊗n |k〉 =
1√
2n

2n−1∑
j=0

(−1)k�j |j〉 ,

where j � k = j1k1 ⊕ j2k2 ⊕ · · · ⊕ jnkn and ⊕ is XOR as above. Second, this is rooted in a non-trivial

fact that the Hadamard transform is the Fourier transform on the Boolean group (Z/2Z)n.

In the example of the second application of Hadamard in Deutsch–Jozsa for n = 1, we obtain:

1

2

1∑
x=0

(−1)f(x)

[
1√
2

1∑
y=0

(−1)x⊕y |y〉

]
=

1∑
y=0

[
1

2

1∑
x=0

(−1)f(x)(−1)x⊕y

]
|y〉 .

More broadly, the Hadamard maps |x〉 to 2−n/2
∑
y(−1)x�y |y〉. For our state 2−n/2

∑
x(−1)f(x) |x〉, this

will amount to 2−n
∑
x(−1)f(x)+x�y |y〉, just as in the interference experiment.

Exercise 4.2. Write down the Hadamard gate on n = 3.
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5.5. Phase Kickback. In the previous chapter, we have seen the phase factor (“global phase”,

“global gauge”), whereby quantum states |ψ〉 and eiα |ψ〉 are indistinguishable by measurement with any

linear operator φ in the sense of | 〈φ〉ψ|2 = |eiα 〈φ〉ψ|2 = | 〈φ〉ψ|2. (A phase-shift gate P (α) = eiαI

multiplies any state by a global phase α.) If we apply a control-U gate to |ψ〉, where |ψ〉 is an eigenstate

of U , then

• |ψ〉 is unchanged

• the phase |0〉〈0|+ eiα|1〉〈1| is transferred to the input state |ψ〉 of the control qubit.

Let us see the phase kickback in action. Let us consider a single-qubit gate U and its eigenstate |ψ〉:

U |ψ〉 = eiφ |ψ〉 .

We wish to estimate φ up to the period (2π). This is possible with an extra (“ancilla”) qubit, one

Hadamard gate on the ancilla qubit, and a CNOT gate. Notably, after applying the CNOT controlled

by the ancilla qubit, the phase of the ancilla will be φ:

XH ⊗ I |0〉 |ψ〉 =
|0〉+ eiφ |1〉√

2
|ψ〉 ,

where we have used the fact that CNOT = [I0; 0X].

In the two-qubit Deutsch algorithm above, the first qubit acts as an ancilla qubit, and the controlled qubit

is in the eigenstate of the NOT gate with eigenvalue -1. φ = π. Thus, we get 1√
2
|0〉+ (−1)f(0)⊕f(1) |1〉.

The phase kick-back is either 0 or π, which can be distinguished by measuring σx, or by applying

Hadamard gate again and then measuring in the computational basis. This will be important in the

following discussion of Simon’s algorithm.

6. The Proof (Sketch) of our first Oracle Separation

Let us illustrate the first, historically, and most commonly taught “oracle separation” between BPP and

BQP on Simon’s problem. This is not a problem, which would be useful on its own, more akin a “guessing

game”. It uses a highly structured, “periodic” oracle. We will see, however, that the crucial concept

of “period finding” underlies the famous Shor factoring algorithm. (Daniel Simon actually recalls1 that

Shor developed his factoring algorithm having seen a preprint of his.)

In the so-called Simon’s problem, we have

• a dimension n

• a black-box function f(x) : {0, 1}n → {0, 1}n that has a rather unusual property: for all

x, y ∈ {0, 1}n, f(x) = f(y) if any only if x⊕ y ∈ {0n, s} for some unknown secret s ∈ {0, 1}n,

where ⊕ denotes the elementwise XOR operation. Notice that x⊕ y = 0n, if and only if a = b. Thus,

• either the secret is s = 0n and the function is a bijection (“one-to-one”, invertible)

• or the secret is s 6= 0n and the function is not a bijection, but rather “two-to-one”.

The decision version of the problem asks whether the unknown function f is a bijection (and thus whether

s = 0n).

Exercise 4.3. To get a feel for this, pick an f(x) : {0, 1}3 → {0, 1}3. Ask your neighbour to guess

whether it’s a bijection. How many queries did he need?

Notice that there is no input. Hence, it is impossible to reason about the description complexity of

the input. Let us measure the complexity of (a classical or quantum algorithm) by the number of

evaluations of f at distinct values (x) it requires. (This is also known as the number of oracle queries

or oracle complexity.) In a deterministic Turing machine, one may try 2n inputs one by one until one

obtains two inputs producing the same output, or decides that no two match. In a probabilistic machine,

1https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/

5



one may try to sample the 2n inputs randomly, and as long as no two match, suggest that the function

is a bijection, with an ever higher probability.

The quantum algorithm for solving the problem is similar to the randomized algorithm. Repeatedly, for

each sample, we perform the following steps:

(1) creates an initial, two-register state |0〉⊗n|0〉⊗n

(2) apply Hadamard transform on the first register: 1√
2n

∑2n−1
k=0 |k〉|0〉⊗n

(3) apply the function via the oracle to obtain 1√
2n

∑2n−1
k=0 |k〉|f(k)〉

(4) apply the Hadamard transform on the first register again:

1√
2n

2n−1∑
k=0

 1√
2n

2n−1∑
j=0

(−1)j�k|j〉

 |f(k)〉 =

2n−1∑
j=0

|j〉

[
1

2n

2n−1∑
k=0

(−1)j�k|f(k)〉

]

(5) obtain y by measuring the first register. The probability of measuring |j〉 is
∣∣∣ 1
2n

∑2n−1
k=0 (−1)j�k|f(k)〉

∣∣∣2.

Then, we classically solve a system of equations given by the samples to obtain s. (Each sample satisfies

ys = 0.) If s = 0n, return YES.

7. Going beyond our first Oracle Separation

Shor’s factoring algorihm uses a non-trivial initial preprocessing, but then we perform the following steps:

(1) creates an initial, Q-qubit state |0〉⊗Q
(2) apply Hadamard transform on it: 1√

Q

∑Q−1
k=0 |x〉

(3) apply the function f(x) = axmodN using Uf |x, 0n〉 = |x, f(x)〉 to obtain

Uf
1√
Q

Q−1∑
x=0

|x, 0n〉 =
1√
Q

Q−1∑
x=0

|x, f(x)〉

such that the value we are looking for is in the phase of

(4) apply the quantum Fourier transform: 1
Q

∑Q−1
x=0

∑Q−1
y=0 ω

xy|y, f(x)〉
(5) obtain y by measuring the first register. The probability of measuring |y, z〉 is

1

Q2

sin2(πmryQ )

sin2(πryQ )
.

Then, we apply classical post-processing.

If you felt that there is common pattern across these algorithms, you are right. The quantum Fourier

transform is, in some sense, just a more efficient way of measuring the phase. There are, actually,

very few “paradigms” in the design of quantum algorithms, and some of the steps (equal superposi-

tion, some operation thereupon) are necessary. One may consider, for example Abhijith et al. [2022],

amplitude amplification (algorithms above and Grover) with or without quantum Fourier transform,

Harrow-Hassidim-Lloyd (HHL), and quantum signal processing (QSP).
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