
CHAPTER 3

Quantum Computing

1. What we have seen so far?

In quantum computing, instead of symbols from finite alphabets (e.g., bits), one works with vectors in

suitable complex vector spaces. An extension of BPP to this setting is known as BQP.

1.1. Qubits. One of the main differences between classical and quantum physics is the fact that

quantum states are described by vectors in a complex vector space, rather than binary strings. Abstractly,

we use the Dirac, or bra-ket, notation to denote a state vector. If the system is in some state, let us call

it ψ, we denote this as

|ψ〉.
This is called a ket. The ψ is just a label of the state while the encasing |·〉 is there to remind us that

this is a vector.

The ket vectors satisfy the ordinary axioms of a vector space. Under addition, the vector space is closed,

associative and commutative. There is a unique zero element, which we denote simply by 0, such that

|ψ〉+ 0 = |ψ〉. (3.1)

The reason why we do not use |0〉 to denote the zero vector is because we want to reserve that notation

for something completely different, as we will see in a short while. There is also a unique vector (−|ψ〉)
such that

|ψ〉+ (−|ψ〉) = 0. (3.2)

The vector space is linear and distributive under scalar multiplication. This means that for some complex

numbers z, z1, z2 ∈ C,

|(z1 + z2)ψ〉 = z1|ψ〉+ z2|ψ〉, z(|ψ〉+ |ϕ〉) = z|ψ〉+ z|ϕ〉. (3.3)

Formally, single qubit can be seen as a two-dimensional complex space, C2, associated with an inner

product and a basis. The standard complex inner product is vi
†wi. Together with the inner product, we

call C2 a Hilbert space, sometimes denotedH2. The standard basis is {|0〉 , |1〉}. The usual representation

of the state of a qubit is that of unit vector R3 on the so-called Bloch sphere, see Fig. 3.1, which is

isomorphic to the complex projective plane CP1. As such, a qubit’s state can be completely characterized

as the unit vector on the unit sphere. A quantum state |ψ〉 and a quantum state c |ψ〉, c ∈ C are

indistinguishable. (Sometimes, this phase factor is called “global gauge”.)

1.2. Superposition. Formally, just as in any other vector space, we can represent vectors as com-

binations of basis states. Let the arbitrary state of a qubit be denoted as |ψ〉 ∈ H2. How do we describe

this state in terms of the two basis states of H2? Let us have two complex numbers cx ∈ C with

x ∈ {|0〉 , |1〉}, which we will call amplitudes. These satisfy
∑

x∈{|0〉,|1〉} |cx|2 = 1. The general state |ψ〉
of the qubit, can be seen as:

|ψ〉 =
∑

x∈{|0〉,|1〉}

cx |x〉 . (3.4)

The squares of the amplitudes can be thought as the probabilities of finding the qubit in a particular

basis state.

In quantum mechanics, observable quantities always are Hermitian operators. Often, one can think of

them as Hermitian matrices, that is, complex matrices H with the property H = H†. As a map, an

1

x

y

|0

|1

Figure 3.1. The Bloch sphere. The vector in red denotes the qubit state |ψ〉 = 1√
2
|0〉+

1√
2
|1〉 which is also denoted as |+〉. The labels x and y represent the Euclidean x and

y directions. It is common to use the term (Pauli) z-basis for the standard basis.

observable simply corresponds to an endomorphism in the Hilbert space, H : H → H. An observable H

is measured by considering its expectation value when acting on a state |ψ〉.
〈H〉 = 〈ψ|H|ψ〉 = 〈ψ|Hψ〉 . (3.5)

One of the most important observables in quantum mechanics is the Hamiltonian of a quantum system.

When acting on a state, the Hamiltonian provides the energy of the state. The Hamiltonians play a

fundamental role in many quantum simulation algorithms. However, as described above, the Hamiltonian

seems to be a very physical concept. Within quantum computation, the role of the Hamiltonian can

essentially be assumed by any Hermitian operator. It is customary to call operators that act on qubits

as (quantum) gates which are usually discussed in the circuit model of quantum computation, see Sec.

2.

1.3. Entanglement. If we imagine that we have several quantum systems, each in some state

represented by some state vector, we can combine the separate system into a combined system using the

tensor product of vector spaces, ⊗. If we imagine that we have one system where the state is given by

|ψ〉 and another where the state is given by |ϕ〉, the state of the composite system is given by

|ψ〉 ⊗ |ϕ〉. (3.6)

States that can be written in this simple way are called product states. Otherwise, we call states entangled.

Note that the tensor product does not commute in general.

A system of n qubits (also known as a quantum register) has a state space C2n , which can be seen as a

tensor product C2 ⊗ · · · ⊗C2 of the 2-dimensional single-qubit Hilbert spaces, which we denote (C2)⊗n.

There, each factor corresponds to one qubit. A system of n qubits is associated with the complex inner

product 〈v|w〉 =
∑

i v
∗
iwi and the standard basis {|x1x2 . . . xn〉 : xj ∈ 0, 1}. We denote the tensor

product of N spaces C2, together with the inner products and the standard basis, by B⊗N .

Entanglement is a quantum mechanical phenomenon where the properties of two or more quantum

states become correlated. When entangled, the properties of the qubits are linked in such a way that the

state of one qubit cannot be described independently of the other(s). Multi-qubit states that cannot be

written as separable states are called entangled states. Measuring one qubit of an entangled state will

instantaneously affect the properties of the other qubits, regardless of the distance between them. This

is known as “spooky action at a distance” and is one of the most mysterious and intriguing aspects of

quantum mechanics. We will see that entanglement is necessary but not sufficient for quantum speed-up.

1.4. BQP. Let a probability threshold be a constant strictly larger than 1/2. A language L ⊂
{0, 1}n is in BPP or BQP, respectively, if and only if its corresponding indicator function F (x) : {0, 1}n →
{0, 1} can be computed probabilistically in polynomial time such that:

(1) one starts with register v ∈ [0, 1]2
N

or C2N , for some N ≥ n dependent on F , with an initial

state |x, 0N−n〉 consisting of the input padded to length N by zeros;

2

https://en.wikipedia.org/wiki/Quantum_entanglement

(2) applies a linear stochastic function U : R2N → R2N or U : C2N → C2N to v, whose matrix

representation can be computed in a sparse format by a Turing machine from all-ones input in

time polynomial in n

(3) obtains a random variable Y , wherein F (x), i.e., a single 0 or 1, is followed by N − 1 arbitrary

subsequent symbols with probability at least as high as the probability threshold, wherein the

random variable Y has value y with probability vy or with probability |vy|2, for the value v of

register.

We know that P ⊆ BPP ⊆ BQP, although the proof is quite non-trivial: one has to establish the power

of reversible (classical) circuits and then of the restriction thereof to (classical) permutations. We know

that BQP ⊆ PP. The proof is rather simple. Because PP ⊆ PSPACE, i.e., the class of languages that can

be recognised by a (classical) Turing machine with a polynomial amount of space, we also know BQP ⊆
PSPACE. Interestingly, there is no material difference between what can be done by a Turing machine

with a polynomial amount of space and a quantum Turing machine with a polynomial amount of space.

Unfortunately, we do not know much about the relationship between BQP and non-deterministc Turing

machines (NP), other than some relativised results.

Several models of quantum computation have been devised. Crucially, they do not allow for deciding

any problems that are not decidable on a classical computer.

1.5. An Alternative Model of Fortnow. Following Fortnow [2003], we can get some more insight

into the derivation of the result of Arora and Barak.

Let us consider a k-tape extension of a Turing machine:

• a finite, non-empty set Q of objects, representing states

• a subset F of Q, corresponding to “accepting” states, where computation halts

• q0 ∈ Q, the initial state

• a finite, non-empty set Γ of objects, representing the symbols to be used on any tape

• a partial function δ : (Q \ F) × Γk→ Q × Γk×{−1, 0, 1}k, where for a combination of a state

and k symbols read from the tape, we get the next state, the symbol to write onto the k tapes,

and an instruction to shift the k tapes left (-1), right (+1), or keep in its position (0).

In the “Computation as Matrix Multiplication” view of Fortnow, we consider:

• one-step binary version of the transition function: δ′ : Q×Γk×Q×Γk → {0, 1}, which indicates

whether the transition from a configuration ca to cb is permitted ca, cb ∈ C ⊆ (Q× Γk).

• one-step transition matrix T representing δ′ as a |C| × |C| binary matrix.

• multi-step transition matrix T r representing the r-step transition function as a |C|× |C| binary

matrix, where T r(ca, cb) = 1 if and only if M starting in configuration ca will be in configuration

cb when run for r steps. T r(ca, cb) is the number of computation paths from ca to cb of length

r and M accepts if and only if T r(ca, cb) ≥ 1. For polynomial-time machines, we can obtain

the definition of #P this way.

One can extend this view to probabilistic machines:

• one-step [0, 1] version of the transition function: δ′′ : Q× Γk ×Q× Γk →[0, 1].

• probabilistic machines use the δ′′ with the additional restriction that for any initial state and

symbols on the tapes, the values of δ′′ for all other arguments sum up to one.

• corresponding one-step transition matrix T and multi-step transition matrices T r are row and

column stochastic.

• Entries of T r(cI , cA) are the probabilities of acceptance by the probabilistic machine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0, 1}n is in BPP, if and only if there exists a

probabilistic machine as above and a polynomial p such that

• For x in L, we have T p(cI , cA) ≥ 1/2 + ε .

• For x not in L, we have T p(cI , cA) ≤ 1/2− ε.
One can extend this view further to weird machines:

3

• one-step [−1, 1] version of the transition function: δ′′′ : Q × Γk × Q × Γk →[−1, 1], where the

negative values can be intersected with rational numbers.

• weird machines use the δ′′′ with the additional restriction that the corresponding one-step

transition matrix T and multi-step transition matrices T r are unitary.

• Squared entries of T r(cI , cA) are the probabilities of acceptance by the weird machine.

Let a 0 < ε < 1/2 be a constant. A language L ⊂ {0, 1}n is in BQP, if and only if there exists a weird

machine as above and a polynomial p such that

• For x in L, we have (T p(cI , cA))2≥ 1/2 + ε .

• For x not in L, we have (T p(cI , cA))2≤ 1/2− ε.

Adleman et al. [1997] have shown that not only rational numbers suffice, but only a few of those suffice.

1.6. Quantum Turing Machines. This view of Fortnow, while based on Turing Machines, is not

the Quantum Turing Machine, in some sense the original definition of quantum computation:

Deutsch [1985] defined the quantum Turing machine with one tape for input and output and one tape

for intermediate results using:

• Hilbert space instead of a finite set Q of objects, representing states, with an accepting subspace

• Hilbert space instead of a finite set Γ representing symbols to be used on the intermediate result

tape, with zero-vector instead of a blank symbol,

• partial function δ is now δ : Σ × Q ⊗ Γ → Σ × Q ⊗ Γ × {L,R}, where each automorphism of

the Hilbert space is given by a unitary matrix

• still finite set Σ of symbols used for the inputs and outputs.

The probabilistic element comes in the form of a measurement, which translates the state to the output

upon an accepting subspace is reached. Quantum Turing machines and quantum circuits were shown

Yao [1993] to be equivalent in the sense that they can simulate each other in some distributional sense.

While elegant, the analogy with a Turing Machine may be somewhat confusing. It is important to

stress that: There is no branching based on the intermediate results or states. Measurement required

by either would collapse the intermediate result or state. The addition of a probabilistic equivalent of

branching, known as post-selection, leads to a different complexity class, PostBQP = PP, as shown by

Aaronson [2005]. There is no computation in the traditional sense. The state |ψ(nT)〉 at nth time step

is simply Un |ψ(0)〉 for some constant unitary operator U . In some sense, one hence wishes to represent

all possible solutions in the initial state already. There is no notion a random access memory beyond

the qubit register we work with.

1.7. Quantum Circuits. Last but not least, the standard model of quantum computing is known

as the quantum circuit model of Deutsch [1989], and it is not too different from the alternative definition

of BQP, due to Arora and Barak.

Let a probability threshold be a constant strictly larger than 1/2. Consider F : {0, 1}n → {0, 1}m and

N ≥ max{n,m}. There, one:

(1) starts with an initial state |x, 0N−n〉 padded to length N .

(2) applies a unitary operator U : B⊗N → B⊗N (realised by a circuit), which is a composition of

multiple unitary operators U = UL, UL−1, · · ·U2, U1, Ui : B⊗N → B⊗N , where each Ui will be

called a gate and L will be the known as the depth of the circuit.

(3) obtains F (x) followed by N −m arbitrary subsequent symbols with probability at least as high

as a probability threshold.

Let ε be a constant 0 < ε < 1/2. A circuit U computes F : {0, 1}∗ → {0, 1}∗ if for any x we have∑
z

| 〈F (x), z|U〉x, 0N−n|2 ≥ 1− ε. (3.7)

4

The expression on the left-hand side is, indeed, the probability of getting F (x) padded with with arbitrary

z in the measurement of the outcome of U applied to the initial state |x, 0N−n〉.
A function {0, 1}∗ → {0, 1}∗ is in BQP, if there exists a deterministic Turing machine M and a polynomial

p such that M runs in time p(|x|) and produces a description of a quantum circuit that computes the

function.

1.8. Building our first quantum circuits. We are now ready to start building quantum circuits.

The ingredients will be qubits and unitary operators or gates.

First of all we need to discuss where we will start, i.e., what is the initial state of the system, or the

input of the circuit, and how do we prepare that? A simple choice of input vector that is most commonly

used is to pick |0 . . . 0〉 as the initial state vector. Given some general initial state, how do we prepare

it in the |0 . . . 0〉? Well, one very simple way is found by remembering that measurements will make the

system collapse to a given eigenvector of the observable being measured. We can then simply make a

measurement of σz on each qubit, which will return the results ±1 with some probabilities. If we get +1

we know that the qubit is in the state |0〉 as desired, while if we find −1 we know that it will be in the

state |1〉. Then we simply keep the qubits that are in the |0〉 state and act with σx on the others, since

we saw previously that σx|1〉 = |0〉. Now we have our input vector |ψ〉 = |0 . . . 0〉.
The quantum circuit will then start with a number of qubits in the |0〉 state and act on this with some

number of gates, or unitary operators. The most basic gates are:

• NOT =

(
0 1

1 0

)
, CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


and other

classical gates. When acting upon two qubits, he controlled-not, or CNOT, gate, acts in the

following way:
|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |1〉 ⊗ σx|0〉 = |11〉,
|11〉 → |1〉 ⊗ σx|1〉 = |10〉.

(3.8)

CCNOT, also known as the Toffoli gate, is a controlled-controlled-gate acting on three qubits. If

the two first qubits are in the state |1〉, then it acts on the third with the NOT gate. Otherwise

it does nothing. For classical circuits, the Toffoli gate is important, because similar to the

NAND gate, any boolean function can be implemented by using a combination of Toffoli gates.

(This property is called universality or functional completeness.)

• The Pauli matrices: σx, σy and σz. These are typically denoted by X, Y and Z in the circuit

diagrams. On the Bloch sphere we can visualize them as a π-rotation of the qubit about the

corresponding axis.

• The Hadamard gate: H := 1√
2
(σx +σz). It changes |0〉 → |+〉 and |1〉 → |−〉. So it can be seen

as a change of basis. On the Bloch sphere we can visualize it as a π-rotation about the axis
1√
2
(x̂+ ẑ). Hadamard and CNOT make it possible to entangle qubits.

• Phase shift gates changes the relative phase in the expansion in the computational basis by

sending |0〉 → |0〉 and |1〉 → eiϕ|1〉. Common examples are the T gate, with ϕ = π/4,1 and the

S gate, where ϕ = π/2. On the Bloch sphere, these gates can be seen as a rotation of ϕ radians

about the ẑ axis.

1the T gate is confusingly also known as the π/8 gate,

5

• The controlled-U gate acts on a number of qubits and uses the first as a control. If this is |0〉
it does nothing, while if it is |1〉 it acts on the second qubit with the operator U .

One example circuit is Figures 3.2. One important thing to note is that when we read the circuits we

read it from left to right, but when we write it down mathematically the gates act in the opposite order.

|0⟩ H

|0⟩ H •

|0⟩ H

1

Figure 3.2. A simple example of a quantum circuit using the H and CNOT gates.

2. Looking beyond the Basics

Let us now summarize a few important results briefly, following papers of Zhang et al. [2003], Aharonov

[2003], and Van Den Nes [2010]. These concern:

• “role of entanglement” and “interference”: are maximally-entangled states sufficient and nec-

essary?

• “universality”: what gates are sufficient to implement any unitary matrix in SU(n)?

• “weak simulation”: can we sample from the distribution on the measurement of a quantum

circuit’s first qubit in polynomial time using a classical computer?

• “strong simulation”: can we compute the probability of measuring 1 on a quantum circuit’s

first qubit to any given precision in polynomial time a classical computer?

A crucial questions relate to “universality”: what gates are sufficient to implement any unitary matrix

in SU(n)? Traditionally Barenco et al. [1995], one considers all one-qubit gates plus CNOT. One often

implements controlled rotations by a given angle, the phase shift gate, and CNOT, which are sufficient.

Aharonov [2003] based on Shi [2003] defines computational universal the set of gates that can be used to

simulate to within ε error any quantum circuit which uses n qubits and t gates from a strictly universal set

with only polylogarithmic overhead in (n, t, 1/ε). Then, she shows that the set of Toffoli and Hadamard

gate is computationally universal. Contrast this with the classical computation, where Toffoli on its own

is universal.

We clearly need to be able to produce maximally entangled states, using CNOT, Toffoli, or similar. Let

us consider the question of what gates produce maximally entangled states from some separable states.

One can consider, e.g., using Hadamard and a non-local gate such as CNOT. (Non-local gate is from

SU(4) \SU(2)⊗SU(2).) Zhang et al. [2003] have shown that the local equivalence classes of two-qubit

gates are in one-to-one correspondence with the points in a tetrahedron, except on the base. Using

this tetrahedral representation of non-local gates, they have shown that exactly half the non-local gates

are perfect entanglers. This means that the second half of the non-local gates are imperfect entanglers.

While we need a perfect entangler, the role of CNOT is hence not particularly “central”.

Having said that, even the role of Hadamard and CNOT is not particularly central either. Hadamard,

CNOT, and one particular phase shift gate (phase shift by π/2) generate a group called the Clifford

group. By a non-trivial Gottesman-Knill theorem, the Clifford gates does not make a universal gate set.

In particular, the Gottesman-Knill theorem shows that a uniform family of Clifford circuit(s) acting on

the computational basis state |0〉N followed by a computational basis measurement, can be simulated

efficiently on a classical computer. (Actually, their simulation of Clifford-gate circuits belongs to the

complexity class ⊕L (“parity-L”) as classical computation with NOT and CNOT gates, which is not

6

believed to equal to P.) This shows that while maximally entangled states are provably necessary, cf.

Jozsa and Linden [2003] to disallow efficient classical simulation, they are not sufficient.

In a striking result, Van Den Nes [2010] shows that circuits implementing unitaries from the Clifford

group (Clifford circuits), which may contain many Hadamard gates at different places in the circuit,

causing rounds of constructive and destructive interference, are (efficiently) mapped to circuit that do

not utilize any interference at all. In particular, to circuits where threre is one round of Hadamard

gates applied to a subset of the qubits, followed by a round of “classical gates” such as Toffoli, not,

etc. Let C be an arbitrary n-qubit Clifford operation. Then there exist: (a) poly-size circuits M1 and M2

composed of CNOT, PHASE and CPHASE gates and (b) a tensor product of Hadamard gates and

identities H = HS⊗ I acting nontrivially on a subset S of the qubits, such that C ∝M2HM1. Moreover,

M1, M2 and H can be determined efficiently.

In real world, all quantum systems interact with the environment. We often use classical distributions

over quantum states to reason about such “partially known” quantum states. Let us associate probability

pk to the event of system being in state |αk〉. Such a classical distribution is called a “mixed states”,

as opposed the usual “pure” state. A unitary matrix U acts on a mixture {pk, |αk〉} component-wise

{pk, U |αk〉}.
In a simple model of an open quantum system due to Aharonov and Ben-Or [1996], one assumes:

• single qubit faults: each qubit decoheres independently, or undergoes a fault with probability

η per step.

• all operations equal: no decoherence takes place inside the gates.

There, η is referred to as the decoherence rate. This is equivalent to a model, where at each timestep, at

each qubit i, we can have a fault with a probability ηi, as long as
∑

i ηi = η.

Aharonov and Ben-Or [1996] have shown that for models of quantum computing with gates on up to

log(n) qubits, considering the noise model above introduces a delay into the simulation by a probabilistic

machine that is polynomial in the number of qubits and depth of the circuit, for any decoherence rate.

Gottesman [1997], Knill [2005] suggested that one can correct for a substantial decoherence rate in

a Clifford circuit using quantum error correcting codes, at the expense of some overhead in terms of

numbers of “physical” qubits.

7

Bibliography

Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2063):3473–3482, 2005.

Leonard M Adleman, Jonathan Demarrais, and Ming-Deh A Huang. Quantum computability. SIAM

Journal on Computing, 26(5):1524–1540, 1997.

Dorit Aharonov. A simple proof that toffoli and hadamard are quantum universal. arXiv preprint

quant-ph/0301040, 2003.

Dorit Aharonov and Michael Ben-Or. Polynomial simulations of decohered quantum computers. In

Proceedings of 37th Conference on Foundations of Computer Science, pages 46–55. IEEE, 1996.

Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor,

Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum computation.

Physical review A, 52(5):3457, 1995.

David Deutsch. Quantum theory, the church-turing principle and the universal quantum computer.

Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818):97–

117, 1985. doi: 10.1098/rspa.1985.0070.

David Elieser Deutsch. Quantum computational networks. Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences, 425(1868):73–90, 1989. doi: 10.1098/rspa.1989.0099.

Lance Fortnow. One complexity theorist’s view of quantum computing. Theoretical Computer Science,

292(3):597–610, 2003. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(01)00377-2. URL

https://www.sciencedirect.com/science/article/pii/S0304397501003772. Algo-

rithms in Quantum Information Prcoessing.

Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Institute of

Technology, 1997.

Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational speed-up. Pro-

ceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,

459(2036):2011–2032, 2003.

Emanuel Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39–44, 2005.

Yaoyun Shi. Both toffoli and controlled-not need little help to do universal quantum computing. Quantum

Information & Computation, 3(1):84–92, 2003.

Maarten Van Den Nes. Classical simulation of quantum computation, the gottesman-knill theorem, and

slightly beyond. Quantum Info. Comput., 10(3):258–271, mar 2010. ISSN 1533-7146.

A Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE 34th Annual Foundations

of Computer Science, pages 352–361. IEEE, 1993.

Jun Zhang, Jiri Vala, Shankar Sastry, and K Birgitta Whaley. Geometric theory of nonlocal two-qubit

operations. Physical Review A, 67(4):042313, 2003.

9

https://www.sciencedirect.com/science/article/pii/S0304397501003772

	Chapter 3. Quantum Computing
	1. What we have seen so far?
	2. Looking beyond the Basics

	Bibliography

