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Absolute orientation problem in SE(2)

o =argmin 3 | Rp+t=a| " = argmin Z IRop; — QI + IRy + ¢ —\qHz
Substitution: P{=P;~— Z P 4i=4i-— 2 q; Can be always 760
' ! by appropriate choice of t
p q
: . _ ol : :
Solution: H = Z p'q. ... covariance matrix

H —H
0* = are min R.p’ — q’||* = arctan = >
g mi Zi,u oP; — il ( 03 Hw)

t* = arg mtin |Rpp +t — qll> = q — R,.p
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1. Solve absolute orientation:
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Pose from known correspondences

Input:  pointcloud q;
pointcloud p,

correspondences c¢(i)

1. Solve absolute orientation:

R*, t*, = arg min
ReSO(3),t

Output: R*, t* = z

l

Rpi +t - qc(i)




Pose from unknown correspondences

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = Ry, t* =t

2. Solve nearest neighbour:

c(i)* = arg min

R*p, + t* — q.)




Pose from unknown correspondences

Q Input: poir':clouccj q;
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P; ’ ’ Al
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2. Solve nearest neighbour:

c(i)* = arg min E R*p,- + t* — A
3. Solve absolute orientation:
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Pose from unknown correspondences
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Pose from unknown correspondences

q; Input: pointcloud q;
c(i)y” o o > o pointcloud p,
pi O O O ®
. - é 1. Initialize R* =R, t* =t,
. 2. Solve nearest neighbour:
2
L c()* =argmin ) | R*p;+t*—q,,
b c(i)
D

3. Solve absolute orientation:

R*, t*, = arg min Z Rp; +t—q. ;-
ReSO(3).t

l
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Pose from unknown correspondences

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = Ry, t* =t

2. Solve nearest neighbour:

c(i)* = arg min E R*p,- + t* — A
3. Solve absolute orientation:

iterate

R*, t*, = arg min Z Rp; +t—q. ;-
ReSO(3).t

l
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Pose from unknown correspondences

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = Ry, t* =t

2. Solve nearest neighbour:

c(i)* = arg min E R*p,- + t* — A
3. Solve absolute orientation:

iterate

R*, t*, = arg min Z Rp; +t—q. ;-
ReSO(3).t

Output: R*,t* = 2z’

l
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Pose from unknown correspondences with outlier rejection

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = Ry, t* =t

2. Solve nearest neighbour:

c(i)* = arg min E R*p,- + t* — A
3. Solve absolute orientation:

iterate

R*, t*, = arg min z Rp; +t—q. ;-
ReSO(3).t

Output: R*,t* = 2z’

l
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Pose from unknown correspondences with outlier rejection

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = R,, t* =t
2. Solve nearest neighbour:

c(i)* = arg min z R*p, + t* — A

c(i) i | .
3. Outlier rejection by median thresholding:

if |IR*p;+t* —q.i«lI°>60 then c()*=

iterate

4. Solve absolute orientation:

R*, t*, = arg min Z Rp; +t—q ;)
ReSO3).t

Output: R*,t* = z’

l
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Pose from unknown correspondences with outlier rejection

Input:  pointcloud q;

> P pointcloud p,

"/ 1. Initialize R* = Ry, t* =t
®

c(i)* = arg min
c(i)

iterate

2. Solve nearest neighbour:

R*p, +t* — q.)

3. Outlier rejection by median thresholding:
if |IR*p;+t* - qc(i)*Hz >0 then c()’=

4. Solve absolute orientation:

R*, t*, = arg min
ReSO(3).t

Output: R*,t* = z’

Rpi +t - qc(i)*

l
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Pose from unknown correspondences with outlier rejection

Input:  pointcloud q;
pointcloud p,

1. Initialize R* = R,, t* =t
2. Solve nearest neighbour:

c(i)* = arg min z R*p, + t* — A

c(i) i | .
3. Outlier rejection by median thresholding:

if |IR*p;+t* —q.i«lI°>60 then c()*=

iterate

4. Solve absolute orientation:

R*, t*, = arg min Z Rp; +t—q ;)
ReSO3).t

Output: R*,t* = z’

l
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o Converges:

ICP SLAM - known issues

0 a local minima with unknown region of convergence

=> good Inr

1alization needed
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ICP SLAM - known issues

» Converges to a local minima with unknown region of convergence
=> good Initialization needed
 Measurement probability model fails in degenerate environments
(e.g. forward motion in long hallways, or rotation in circular room)
=> other models (point2plane) and sensors (camera) often introduced.
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ICP SLAM - known issues

» Converges to a local minima with unknown region of convergence
=> good Initialization needed
 Measurement probability model fails in degenerate environments
(e.g. forward motion in long hallways, or rotation in circular room)
=> other models (point2plane) and sensors (camera) often introduced.

19



q; e

=
Q
é

.
.

point-to-plane measurement probability model

Absolute orientation:
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point-to-plane measurement probability model

Absolute orientation:
. 2
R*, t*, = arg min Z ” Rp;,+t—q, |
ReSO3),t
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 point-to-plane measurement probability model

Absolute orientation:
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ReSO3),t

R*,t*, = arg min Z nT(RPi +t—q;)

ReSO3)t ~

Does not have closed-form solution




point-to-plane measurement probability model

4; Absolute orientation:
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R*, t*, = arg min Z Rp.+t—q,
ReSOR)t

Avoid gradient optimization => create virtual map point

Rp; +t—q;




ICP SLAM - known issues

» Converges to a local minima with unknown region of convergence
=> good Initialization needed
 Measurement probability model fails in degenerate environments
(e.g. forward motion in long hallways, or rotation in circular room)
=> other models (point2plane) and sensors (camera) often introduced.
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ICP SLAM - known issues
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Alignment quality is determined by the quality of correspondences

o Compatibility measure:
s o o L o [ |dar
o ® normals

@ ® curvature

® any measure of shape similarity
e Camera

colors

semantic consistency (car-car)
any measure of visual similarity
dynamic object suppression
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|ICP SLAM - known |

SSUES

Converges to a local minima with unknown region of convergence

=> good Initialization needed
Measurement probability model fails in dege

nerate environments

(e.g. forward motion in long hallways, or rotation in circular room)

=> other models (point2plane) and sensors (camera) often introduced.

Pointcloud map Is not suitable for planning

=> petter representation (e.g. occupancy grid)
Normal distribution sensitive to outliers due to L2 norm minimization

=> RANSAC
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2D/3D pointcloud map
2D/3D Occupancy grid
Surfel/tfeature map

2.5D map (hightmap)
Costmap / Traversability map
Semantic map

Topological map

Functional map

Maps
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Occupancy grid

* planning a robot path typically requires to distinguish “unoccupied” (free) space
from “unknown” space.

e simplest representation which allows to do this, is occupancy grid.

B ... occupied (+1)
= ... unknown (0)

... unoccupied (-1)
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Occupancy grid

» We model only the probability p(o:i|z1:¢+) that cell i is occupied
given measurements Zi:
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Occupancy grid

» We model only the probability p(o:i|z1:¢+) that cell i is occupied
given measurements zi:¢

ENEEEEEN
ENEEEEEN

ENEEEE
ENEEEEE
HEEEEE NG
L ]

2D occupancy grid




Occupancy grid

» We model only the probability p(o:i|z1:¢+) that cell i is occupied
given measurements Zi:
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Occupancy grid

» We model only the probability p(o:i|z1:¢+) that cell i is occupied
given measurements zi:¢
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%g%g%g%g 2X occupied, 1x unoccupied
S It occupied, unoccupied or unknown?

2D occupancy grid Simple hack: b =2 — 1 b<6, .. unoccupied

O <b<6g ....unknown
There exists a probabilistic justification of this hack! b>0n .. occupiec



ICP SLAM - known issues

Converges to a local minima with unknown region of convergence

=> good Initialization needed

Measurement probability model fails in degenerate environments

(e.g. forward motion in long hallways, or rotation in circular room)

=> other models (point2plane) and sensors (camera) often introduced.
Pointcloud map Is not suitable for planning

=> petter representation (e.g. occupancy grid)

Next: Normal distribution sensitive to outliers due to L2 norm minimization
=> RANSAC
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