Localization: MLE estimate

Karel Zimmermann



Prerequisites: Bayes theorem

A ... have disease p(A) =0.001 Prior probability of having disease 0.1%
p(A) =0.999 Prior probability of being healthy 99.9%

B ... positive test pB[A)=1  Everyone who have disease tests always positive

p(B|A) =0.05 There are 5% of healthy people, with positive test

B|A)p(A B|A)p(A *
p(B|A)pA) p(B|A)p(A) _ 17%0.001 ~ 199

p(A|B) = = —
p(B) p(B|A)p(A) + p(B|A)p(A) 1*#0.001 + 0.999 * (.05

Only 18% of doctors+students from Harvard Medical school answered correctly.



Prerequisites: Multivariate gaussian
eXp( —(x—p)' 27 (x —ﬂ))

\/ 2r)det(X)

x € R" ... real n-dimensional

fg'égg random column vector

px) = N(X;p,2) =

0.050 | |
Eo.oz5 e R" ... real n-dimensional

0.000 mean
£-0.025
£-0.050 x . . .
o075 2 € R"L. symmetric positive definite
~0.100 covariance matrix

10

eigenvalues and eigenvectors of X
determine ellipse axes




Prerequisites: Multivariate gaussian
eXp( —(x—p)' 27 (x —ﬂ))

\/ 2r)det(X)

px) = N(X;p,2) =

+0.100 | o
Loo7s5 Gaussian distributions are closed under:

£0-050 « Affine transformation

0.025 .
0.000 ° Chain rule

+0.025 * Conditioning




Prerequisites: Multivariate gaussian
eXp( —(x—p)' 27 (x —ﬂ))

\/ 2r)det(X)

£0.100 « (Chain rule
10.075

[o.oso Product of two Gaussians is Gaussian:

px) = N(X;p,2) =

0.025
0.000 N (X;py,2y) - N (X4, Xp) = N(X;p, X)
—0.025

=0.050 y-1 _ y-1 —1
} 2T =2+ X
0.075

~0.100 g = 2(21—1;,1 1 Zglﬂz)
10
8 Logarithm of Gaussian is quadratic form:

1
xy log(H D)) = =S x—p = (x—p)+C




Motivation example
Measurement probability: p(z;| u) = N (z; u, %)

position measurements

H {1 <3

maximizing product of gaussians <=> minimizing the sum of L2 differences

v | 13 —
& — H .
y* = arg max H‘/’/(Zi;/’t902) = arg m/;clx HK exp (_ 2) = arg IILII] Z |z, —,uH%

2
U O



Motivation example
Measurement probability: p(z;| u) = N (z; u, %)

position measurements

1 DB 23

maximizing product of gaussians <=> minimizing the sum of L2 differences

MLE | ”2 LS
& — M7 .
u* = arg max H/V(Zmu, )> = arg m;lx HK exp (— > ) = arg n;m Z |z, —,uH%
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w = arg max | | N, i(wlxz’ + W, 0'2) — arg min E (wlazi + W _.)2
W 4%
; 1



S 0.4 vy
0.6 e 0.2
1.0 0.0

w = arg max | | N, i(wlxz’ + W, 0'2) — arg min E (wlazi + W _.)2
W 4%
; 1

10



w = arg max | | N, i(wlxz’ + W, 0'2) — arg min E (wlxi + W _.)2
W 4%
; 1

loss(w0,w1)



Localization problem definition

States: X0, X1,...,Xt €ER" .... 6DOF robot’s poses (no map for now)
Actions: up,...,u € R™ .... generated by external source
Measurements: Z1.....2; € RF .... comes from variety of sensors

Goal: o estimate most probable X,...X,
© Or just X,
o or full dlstnbutlon p(x,) or even p(X,...

® TOT0 7O



Sensors for localisation (odometry)

Motor encoders (wheel/joint position/velocity)

Accelerometer (linear acceleration)

Gyroscope (angular velocity)

Magnetometer (angle to magnetic north)

IMU: Accelerometer+Gyroscope+Magnetometer (9DOF measurements




Sensors for localisation (exteroceptive)

Camera (RGB images - spectral responses projected on image plane)

SONARDYNE beacons




Sensor measurements

o Noise characteristic (GPS vs camera for localisation)
o Operates in its own coordinate frame

o Spatiotemporal (and spectral) resolution
(I.e. number of pixels/channels in image, number of measurements per second)

o Absolute/relative measurements wrt a reference coordinate frame
(e.g. GPS/IMU) and integrating the relative measurements does not work!

Consequence: Need a reasonable probabillistic approach that fuses all
measurements in order to estimate the most probable pose(s)



Localisation problem definition
Today only 1D/2D translations (no rotations)

States: X0, X1, ... X; € R" .... BD@E. robot’s poses (no map for now)
Actions: ug,...,u; € R™ .... generated by external source
Measurements: Z1,...,2Z4 € Rk .... comes from Variety of sensors
Unknown 1. Construct p(x|z)
MAP: x* = arg mSXp(X |z,u) = arg gﬁzg-/@l...zt,@. Optimize poses

=]

Given this




Problem definition

Def: A and B are conditionally independent given C iff p(A|B,C) = p(A|C)




Problem definition

Can we simplify it? p(Xy...X,|Z;...Z,,u,...u)
Def.: A and B are conditionally independent given C iff p(A|B,C) = p(A|C)

state-transition probability:  p(X;y X, 0,41) = p(Xpy | X, Uy 13 X 1 2y U )

/A/ - future

C
&) —




Problem definition

Can we simplify it? p(Xy...X,|Z;...Z,,u,...u)
Def.: A and B are conditionally independent given C iff p(A|B,C) = p(A|C)

state-transition probability:  p(X. 1 [X, U ) = p(Xy 1 [ X 01, X015 2y Uy )

measurement probability: p(z,|x,) = p(z,| Xt,_)

C




Problem definition

Can we simplify it? p(Xy...X,|Z;...Z,,u,...u)
Def.: A and B are conditionally independent given C iff p(A|B,C) = p(A|C)

state-transition probability:  p(X,, ;[ X, 1) = p(Xy 1 [ X 01, X1, 2 Uy )

measurement probability: p(z.|x)=pz|X,Xg_1>Z1-,_1,U).,)

p(z,|x,Xx,_;) = p(z,|X, Xt—l_)

C
) — & —

A




Single time instance only
_|_

Absolute pose measurement (e.g. GPS)



ocalisation from GPS measurements only in single time instance
Assume only gps measurement in time t is known

MAP: x* = arg maxp(x |z, u) = arg maxp-(1 Z,U;... W) = arg max p(X, \ZGPS)

XO X Xt

Bayes theorem Unitorm prior Normal likelihood

* p(ZtGPS ‘ X t) * *

X
= arg max ) P = arg max p(zGP |x,) = arg max A (z;
GPS !
X p(zt ) X; Xy

Measurements Z," ~ are normally
distributed around the true position X,

GPS. GPS
;X 2 0)

GPS

= arg max J/(x,; 2", TOF)

X;

Irue positions X, are normally

distributed around measurement ZGPS




ocalisation from GPS measurements only in single time instance
Assume only gps measurement in time t is known

MAP: x* = arg maxp(x |z, u) = arg max p {...Z,U;...) = arg max p(x, | zZ")
max pEEX) (2.2 :
Bayes theorem Normal prior and likelihood
* p(ZtG ] X,) p(X,) * GPS
= arg max = arg max p(z,”"* | x,)p(X,)
Xy (ZGPS) Xy

arg max ./} (ZGP 3. X,, ZGP S)/V (X,; Xy, 2g) = arg Hgn (X, — zGP 5)2 ST + (X, — XO)ZZ_O




Example: 2D Localisation from GPS measurements only in single time instance

X* — arg max ‘/V(ZtGPS; XZ’ ZIGPS)/V(XP XO’ ZO) ZtGPS — [192]T9 X() — [393]T
= argmin [|x, — 2051 + [|x, — X, $OPS = 5 = [(1) (1)]

!
arg min (X, — sz S)T(Xt — Zf}P S) + (X, — XO)T(Xt — X))
(X[; XOa

The result Is linear least squares
with closed-form solution

(1,0; 0,1; 1,0; 0,1]
[le 2p 39 3]
pinv (A)*b

A
b

X



Example: 2D Localisation from GPS measurements only in single time instance

X* — arg max ‘/V(ZtGPS; XZ’ ZIGPS)/V(XP XO’ ZO) ZtGPS — [192]T9 X() — [393]T
= argmin [|x, — 2051 + [|x, — X, $OPS = 5 = [(1) (1)]

! GPS\T GPS T
argmin (X, — 2, °) (X, —2”"°) + (X, — X;) ' (X, — X))
The result Is linear least squares
with closed-form solution

Equilibrium of mechanical machine
(I.e. state with minimum energy)

1 2




Example: 2D Localisation from GPS measurements only in single time instance

X* — arg max ‘/V(ZtGPS; XZ’ ZIGPS)/V(XP XO’ ZO) ZtGPS — [192]T9 X() — [393]T
= argmin [|x, — 2051 + [|x, — X, $OPS = 5 = [(1) (1)]

! GPS\T GPS T
argmin (X, — 2, °) (X, —2”"°) + (X, — X;) ' (X, — X))
The result Is linear least squares
with closed-form solution

Equilibrium of mechanical machine
(I.e. state with minimum energy)

1 2




Example: 2D Localisation from GPS measurements only in single time instance

X

*

arg max /V(ztGPS; X, ZIGPS)/V(Xt; X(, 240) ztGPS =[1,2]". Xy = (3,3]"
Xl‘
: PS|2 2 GPS
arg min ||x, — ztG SHEtGPS + ||x, — XOHZO Il I
Xy
: — PS\|[2 ~1/2 2
arg min [|(Z7°) 75 (x, — 27)|17 + 1125 (x, — xo)

The result Is linear least squares
with closed-form solution




Example: 2D Localisation from GPS measurements only in single time instance

* .
X" = arg min th—ztGPSH%

PS'12
tGPS_l_ ”Xt o ZtG S”z

2
GPS' + th o XOHZO

The result Is linear least squares
with closed-form solution




Multiple time Iinstances
_|_

Absolute pose measurement (e.g. GPS)



Localisation in multiple time Iinstances

x* = arg max A (z7"°; x;, 7)) N (25" x5, Z9) 207 =[1,2]", 25" =[3,3]"
X1,X9
- GPS||2 GPS||2 GPS $GPS
— alg min Hxl o Z1 HZ?PS + HX2 o Z2 szGPS 21 ’ 22
X1-X2

The solution splits into two
trivial subproblems
(no relation between
pnoses IS modeled)

Let's model a relation between poses |




Multiple time Iinstances
_|_
Absolute pose measurement (e.g. GPS)
_|_

Relative pose measurement (e.g.odometry from wheels/IMU/camera/lidar)



2D Localisation in multiple time instances from GPS+odom

* ok 00
X[, X, =10

The result Is linear least squares
oroblem with closed-form solution




2D Localisation in multiple time instances from GPS+odom
Assume only two absolute gps measurements and one relative odom. measurement

arg max p-(l Z,, lllfj = arg max p(XI’ X, ‘ ZGPS GPS Z?czlom)

X1.X)
Bayeitheorem Unitorm prior
GPS. GPS d
= arg max Pz 212 1%, Xo) pOX, X)) ' = arg max p(zGlD S 295 zodom | x . X,)
X,,X, p(Z?PS ZGPS odom) X, 2 12 > 2

Normal likelihood

v

= arg max ,/V(ZGPS Xl,ZGPS)./V(ZGPS X, EGPS)/’/(ZOdom, X, Xl,Eodom)
X1.X2

- GP
= argmin [|x; = 207300 + 11X = 257 3005 + 1% = X = 205" |30

X1,X9



2D Localisation in multiple time instances from GPS+odom

* .
X" = argmin ||X; — Z?PSH%
X1,.X9

PS||2
?PS_I_ HX2_Z2G SHZ

2
2GPS + HX2 T Xl T Z?Cziomuz?czlom

-

, EEEN HEN
-

Y

2

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom

unary
x* = argmin_||x; — z7"°||5

PSq2
GPS + HXZ o ZQG SHZ

d 2
2GPS + HXZ T Xl T Z?ZOmHZ?gom

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom

N . Unary b Uﬂar)éS p
X = argmin HX1 — Z, H >GPS + [|X, — Z2 H SGPS + HXZ — X — Z?ZOmHZOdom

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom
unary unary palir-wise
?PS + ‘ X - Z2

* PSH2
)

X* = argmin_||x, — 20 5112 odom) 2

GPS T HXZ — X1~ Z12 Y odom

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom
N unary. unar. palir-wise

X = arg min Hxl — Z, PS” 5GPS + HXZ — Z2 SH SGPS + HXZ — X| — Z?Czlamuzodom
X1:X

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom
unary unary palir-wise
GPS T HXZ — Z,

2
odom
2 12

odom

* GPS T HXZ — X1 —Z ”

X = argmin |X;
X 1,Xy

PS|12 2
o Z? SHE SHZ

P (ZQG e | X5)

quilibrium of mechanical machine
(I.e. state with minimum energy)

1 2

The result Is linear least squares
oroblem with closed-form solution



2D Localisation in multiple time instances from GPS+odom
unary unary palir-wise

PS|12 2 d
— Z? SHz?PS T HXZ o Z2G SHZ 1

2
GPS T HXZ — X1 —Z ”

odom
2 12

X* = arg min ||x,

X1,X9

P (ZQG e | X5)

quilibrium of mechanical machine
(I.e. state with minimum energy)

1 2

The result Is linear least squares
oroblem with closed-form solution



Motion model



Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)

O—0- -0—0—0-

¢ & &



Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)

State-transition probability: P(X;|

future

S @ @“’
O




Localisation in multiple time instances from actions and motion model

Actions: u,...u, (generated by external source)

State-transition probability: P(X;|

Markov assumption: pX, [ Xmply) = p(X, Kol X, o, - X Wy gy e U 2y, e Zy)

Motion model: X, = g(X,_1,0) + €poise (prior about robot’s behaviour)

Example: pX|X,_,u) = N (X;8(x,_1,0), Ze.g. linear V(x;x,_; +u, X))
past future

— .\

S @ @"’
@ O




Putting measurements and motion model together



L ocalisation from actions + GPS + IMU
Bayes theorem

Z, | Xp- -

)

p(z,..
arg max p-IC1 Z, ulfj = arg max

Conditional independence of z on u given X

v

= arg max p(z,...Z,|Xy...X,) p(Xy...X,|0;...1,)
Xg---X,

Normal likelihoods

v

= arg max H,/I/(ZGPS X, ZGPS) H/V(z“dom X — X._ 1,20d0m) H/V(Xl,g(xl 1> W), 23)

X0 -

arg min 2 1%; — 2875 30rs + Z 1%, = Xy = 20" 300 + Z Ix; — g1, w13,
U =

arg min ) f(x,z)* Non—lmear least squares => GN/LN from OPT
ot scipy.optimize.least_squares(fun, x0, jac)



Factor graph



Factor graph
o Design choices (I\/Iarkmz assumphon cond:: rndependence) yleJde@I sparse. nodel

* ol a,
° 8 S
7
® . ..

X" = arg Max . I I P (ZGPS‘X) I I P(Ziadam‘xiax I I pX;|x;_j,u;)
et i unary R pa|r—vv|se I i pair-wise ,:
_ __ yodom o, - RS

T arg mln‘ Z HX Z I—1 Z 2@&’01%0 Z HX g(Xl lau)

X0 -




Factor graph
Def: Factor graph is bipartite graph & = {%, 7", &} with

o Two types of nodes: factors @, € % and variables X; € 7
o bdges ¢; € & are always between factor nodes and variable nodes.

D(X,X,,X;) .. €.0. ternary factor

s(x,, X3)

/%(XHXZ)/ T \l\
X l X3

l D,(x,) l
D, (x) D, (x3)




Factor graph
Convenient visualisation of the problem structure

Evaluation of unnormalised prob. for given values of variables
Simple formulation of MAP estimation problem

X)) ...X,” = arg max H ®(X;) = arg min Z — log(CDi(Xi))

XOoooXt- . XO...Xt i

Optimisation (continuous var. => local graoiient opt., discr. var. => graph search)
Sampling of P(Xp---X) (MCMC Gibbs sampling, ancestral sampling for dir. acyclic)




Factor graph
o (Convenient visualisation of the problem structure

o Evaluation of unnormalised prob. for given values of variables
o Simple formulation of MAP estimation problem

X)) ...X,” = arg max H ®(X;) = arg min Z — log<CI>i(Xi))

XOoooXt- . XO...XZ. .

l

o Optimisation (continuous var. => local graoiient opt., discr. var. => graph search)
o Sampling of P(Xp---X) (MCMC Gibbs sampling, ancestral sampling for dir. acyclic

o Graphical model usetul for MAP estimation:
SLAM

optimal control

tracking

O O O O



Summary
Understand localisation problem in robotics as MAP estimate of unknown variable:

Model measurement probability of simplified IMU and GPS
Model state-transition probability for linear and nonlinear motion models
Write down optimisation criterion in negative log-space for gaussian prob. distr.

Solve underlying opt. problem using least squares / gradient descend algorithm
in your favourite optimisation tool (MATLAB, Scipy, Pytorch, Julia, Mosek)

Next lecture: Adds rotation ans solve the optimization in SO2 manifold

Optional HW: 20 =[1,2]", 257 =[3,2]", GPS = [3,3]" Absolute measurement:
0d0m =[1,1]", 0d0m =[1,1]", 0d0m =[1,1]1" Relative measurements
u, =[1,11", u, =[1,1]", u, = [1,0]T, Actions
x,=[0,0]", x,=?2, x, =7, x;="7 States
X = (X1 W) + €uie = Xy + U+ 6 Motion model

All probs are 2D Gaussians with Zf° = X940 = X¢ = [(1) (1)]



