Exam from ARO	Name:
	Login:
	Number of submitted sheets:

June 15, 2023

1. Pose from unknown correspondences: Consider the problem of estimating the 2D translation of a robot in a 2D world from unknown correspondences; see Figure below. The map consists of three blue points $\mathbf{p}_1 = [3, 1]^{\top}, \mathbf{p}_2 = [3, 2.5]^{\top}, \mathbf{p}_3 = [2, 3]^{\top}$ in the "World coordinate frame" (blue arrows). The robot measures two red points $\mathbf{q}_1 = [1, 0]^{\top}, \mathbf{q}_2 = [1, 1]^{\top}$ in its own "Lidar/Robot coordinate frame" (red arrows). The rotation of the rcf is assumed to be fixed and aligned with wcf (i.e. $\mathbf{R} = \mathbf{I}$).

a) (4 points) Given some correspondences j(i) between the measured pointcloud \mathbf{q}_i and the map $\mathbf{p}_{j(i)}$, what is the point-to-point and point-to-plane distance?

(fill in criterions)

b) (2 points) Draw a corresponding spring-like mechanical machine, the equilibrium of which will be the minimizer of point-to-point distance for some correspondences.

c) (2 points) Assume that correspondences are unknown, and the initial guess for the robot translation in the wcf is $\mathbf{t} = [1, 1]^{\top}$. Perform the first iteration of the Iterative Closest Point (ICP) algorithm with point-to-point distance. What is the resulting translation after the first iteration?

 $\begin{bmatrix} \mathbf{t}_x^{1 \text{st_iter}} \\ \mathbf{t}_y^{1 \text{st_iter}} \end{bmatrix} =$

(the answer is a 2-dim vector)

d) (2 points) Given the previously estimated translation, perform the second iteration of the ICP algorithm:

$$\begin{bmatrix} \mathbf{t}_x^{\mathrm{2nd_iter}} \\ \mathbf{t}_y^{\mathrm{2nd_iter}} \end{bmatrix} =$$

(the answer is a 2-dim vector)

2. Factorgraph localization:

Consider a space exploration mission during which a robot is deployed above an unknown planet with unknown initial velocity $v_0 \in \mathbb{R}$ and initial height $s_0 \in \mathbb{R}$. The state in time t is 2-dim vector $\mathbf{x}_t = [s_t, v_t]^{\top}$. The robot has no engine to provide any control; hence the trajectory corresponds to the free fall up to an unmodeled noise. Since the planet is unknown, the gravitational acceleration $g \in \mathbb{R}$ is considered to be also unknown. You want to jointly estimate the gravitational acceleration g and 2-dimensional trajectory of states $\mathbf{x}_0, \ldots, \mathbf{x}_t$.

a) (2 points) The robot is equipped with a height measuring sensor that delivers height measurements $z_t \in \mathbb{R}$ with zero-mean Gaussian noise and unit variance, i.e. $\mu^z = 0, \sigma^z = 1$. What is the measurement probability of this sensor:

 $p(z_t|\mathbf{x}_t) =$

b) (2 points) Let's assume that the potential influence of the atmosphere on the free fall is negligible; therefore, the path travelled by the robot over time Δt can be estimated by double integrating the acceleration g over time. Given the previous state \mathbf{x}_{t-1} , an acceleration g, and time Δt , what is the current state prediction?

$$\mathbf{x}_t = \begin{bmatrix} s_t \\ v_t \end{bmatrix} =$$

c) (2 points) Assuming that the unmodeled noise of this process is zero-mean Gaussian with unit variance, what is the state transition probability (you can think about the unknown g-acceleration as of static control):

 $p(\mathbf{x}_t | \mathbf{x}_{t-1}, g) =$

d) (2 points) Derive the maximum likelihood estimate of $\mathbf{x}0, \ldots, \mathbf{x}_t, g$, as a function of previously constructed measurement and transition probabilities:

 $\mathbf{x}_0^{\star},\ldots,\mathbf{x}_t^{\star},g^{\star} = \operatorname*{arg\,max}_{\mathbf{x}_0,\ldots,\mathbf{x}_t,g} p(\mathbf{x}_0,\ldots,\mathbf{x}_t,g|z_1,\ldots,z_t) =$

e) (1 point) Draw corresponding factor graph with denoted states, actions and measurements and factors.

f) (2 points) Simplify the ML estimate into the optimization-friendly form, such as the (non)-linear least squares problem:

 $\mathbf{x}_{0}^{\star},\ldots,\mathbf{x}_{t}^{\star},g^{\star}=\operatorname*{arg\,min}_{\mathbf{x}_{0},\ldots,\mathbf{x}_{t},g}\sum_{t}$

g) (1 point) Write down the vector of residuals for unknown variables. What is its dimensionality?

h) (2 points) Sketch a Jacobian for the residuals and fill at least one row with exact expressions. What is the dimensionality of the Jacobian?

3. Completeness:

a) (2 points) You have a path planning problem that has no solution. What answer will be provided by a complete path planning method and why?

4. Potential field:

a) (3 points) Describe (by text/sketch/pseudocode) how planning using Potential field works.

5. Vertical cell decomposition:

a) (3 points) Describe (by text/sketch/pseudocode) how planning using the Vertical cell decomposition works.

- b) (2 points) What is true for this method?
 - (a) Stochastic
 - (b) Probabilistic complete
 - (c) It assumes a point robot
 - (d) Complete
 - (e) Optimal (from path length point of view)
 - (f) Resulting path has always the minimal clearance

6. **RRT***

a) (2 points) Describe (by text/sketch/pseudocode) how rewiring in RRT* works.

7. Collision-detection

a) (2 points) Describe the principle of hierarchical collision detection.

8. Narrow passage problem

a) (2 points) What is the narrow passage problem? Which methods are related to this problem?

- 9. Configuration space Let's assume a rectangle-shaped robot moving in a 2D workspace. Let $C = C_{free} + C_{obst}$ is the configuration space, and $vol(C_{obst}) > 0$, where vol() denotes the volume of the set.
 - a) (2 points) Consider the case where the robot cannot rotate. What happens if you enlarge the robot?
 - $vol(\mathcal{C}_{obst})$ increases
 - $vol(\mathcal{C}_{obst})$ decreases
 - $vol(\mathcal{C}_{obst})$ remains same
 - $vol(\mathcal{C}_{free})$ increases
 - $vol(\mathcal{C}_{free})$ decreases
 - $vol(\mathcal{C}_{free})$ remains same
 - b) (2 points) Consider the case where the robot can rotate. What happens if you enlarge the robot?
 - $vol(\mathcal{C}_{obst})$ increases
 - $vol(\mathcal{C}_{obst})$ decreases
 - $vol(\mathcal{C}_{obst})$ remains same
 - $vol(\mathcal{C}_{free})$ increases
 - $vol(\mathcal{C}_{free})$ decreases
 - $vol(\mathcal{C}_{free})$ remains same