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Maxwell(’s)-Lorentz(’s) Equations

Equations of motion

V X H(r,t) = J(r,t) + (9D(r,t) / for fields

ot

Equation of motion

V-B ('r‘, t) =0 for particles
V. D(rt) = p(r.) /

f(r,t) = p(r,t)E(r,t) +J(r,t)><B(r,t)
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Boundary Conditions
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Electromagnetic Potentials

Lorentz(‘s)
calibration
V- Alr1) = _W(r,t)_ww

Lorentz('s) calibration depends on particular form of material relations.
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Wave Equation

Material parameters are assumed
independent of frequency

Material parameters are assumed
independent of coordinates
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Poynting(’s)-Umov(’s) Theorem

Power passing the

bounding envelope Energy storage
1
[E-J dv= j;"(ExH)-dS+fa\E\2dv+—3 [s\Ef +u‘H‘2]dV
source 2 at
| \ | V \ |
Power supplied Heat losses
by sources

Energy balance in an electromagnetic system
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Frequency Domain

F(r,t)ER F(r,w)E(C

Spatial derivatives are

untouched
Time derivatives reduce to
algebraic multiplication
®
[
®
®
Frequency domain helps us to remove explicit time derivatives O
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Phasors

Reduced frequency domain representation O
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Maxwell(’s) Equations — Frequency Domain

We assume linearity of material relations
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Wave Equation — Frequency Domain

Helmholtz(‘s) equation
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Heat Balance in Time-Harmonic Steady State

Valid for general periodic steady state

Cycle mean

_f<E'Jsource>dV= f<EXH>'dS+!<U‘E‘2>dV

V
2

A

E|l dV

source

—%fRe[E-j* ]dV:%fRe[Exﬂ*]-dS—F%fa

V

Vv

Valid for time-harmonic steady state
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Plane Wave

Unitary vector representing
the direction of propagation

Electric and magnetic fields
are mutually orthogonal

Electric and magnetic fields
are orthogonal to
propagation direction

®
®
Wave-number ‘
o

The simplest wave solution of Maxwell('s) equations O
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Plane Wave Characteristics

INTRODUCTION
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Vacuum

General isotropic
material
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Cycle Mean Power Density of a Plane Wave

Power propagation coincides with
phase propagation
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Source Free Maxwell(’s) Equations in Free Space

V X H(r,t) — a(t) * E(r,t) + s(t) * aE;:’t) ‘kr =k = —jwﬂ(w)(ﬁ(w) + jwé(w))
OH (7t E(kw)= x H (k. w
VxE(r,t):—,u(t)* a(t ) ( ) wé(w)—j&(w) ( )
v-Hini) =0 - Alkw) =~ B(k)
VB =0 D
k-bj(k,w)zo
k-H(k,w):O
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Spatial Wave Packet

This can be electric or magnetic
intensity

General solution to free-space Maxwell's equations
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Spatial Wave Packet in Vacuum

w([k]) = ¢, [K] k- (k) =k F (k)=0

B el [ R
F'(k)=|F (-k :
' ' . 1 1 OF(rt o
\E)+(k):§>[ F(r O)+Jco‘k‘ (‘gt ) e Frdr
I =0 |
.~ 1 1 8F(r,t) s
E, ("‘)ZQ[F(’“ O)_jco‘k‘ ot Oejk ar
_ t=0

The field is uniquely given by initial conditions
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Spatial Wave Packet in Vacuum

Electric and magnetic field are not independent
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Vacuum Dispersion

1D problem
Propagation in one direction
no dispersion
1D waves in vacuum propagate without dispersion O
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Vacuum Dispersion

In general this term does not
represent translation

(0=

JC oK E ( ~je, t|k|]dk

E(r,t) = (271T)3 [ejk.r B (ke

Waves propagating in all directions

2D and 3D waves in vacuum always disperse = change shape in time
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Angular Spectrum Representation Imlk | <0

K[ =k = —juwpi(w)(6 (w) + jwé (w)) =y k= £ K — K2 — &

b A Bl slea)

E(z,y,2 <0,t) = 7 fe”“*’““"’t (K, kw7 dk dk dw
k, ok,
E(z,y,2> 0,t) = : )3 fe””’““"”E(k kL w)e Nk dk dw o
k, ok,
k-E =0 :
®

General solution to free-space Maxwell’s equations
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Propagating vs Evanescent Waves

kj+kj<k2

kj+ky2>k2

These waves propagate and
can carry information to far distances

These waves exponentially decay in amplitude
and cannot carry information to far distances

Field picture losses it resolution with distance from the source plane

FREE WAVES
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Paraxial Waves

Propagates almost as a planewave
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Gaussian Beam

Paraxial
corrections

Gaussian profile Planewave-like
in amplitude propagation

Approximates radiation of sources large in comparison to wavelength
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Gaussian Beam

Half-width of the beam

z
w(z)zwo 1+ Z

Beam divergence

5 22

Rayleigh's distance

L. 5 Tw:
zRZEkwoz )\0
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Gaussian Beam — Time-Harmonic Case

86.5 % of power flows Power density at origin
through the beam width

2

w(z)zwo 1+ Z

R
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Material Dispersion

Stability requirement

Causality requirement
8(7’) =0,7<0

8(7‘) — 0,7 — o0

Even single planewave undergoes time dispersion when materials are present
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Lorentz‘s Dispersion Model

Coupling
Losses Resonance strength
o°P t\aP t l
W() F% +wP(t) = e W E(t)

()= |1+ T —F
;W

0,i —w + jwri

Dispersion model able to describe vast amount of natural materials
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Drude’s Dispersion Model

Special case of
Lorentz's dispersion

/ 0)0:0
, ol

(40

p g,
Permittivity model Conductivity model

2 O,

e(w)=¢,|1- i =) o(w)=—
| o(e-jl) 1+ j%

/

Collisionless plasma
2

I @
;<<1:>g(a))z80 l—w—g

Dispersion model describing neutral plasma
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Appleton‘s Dispersion Model

WHQ aﬂﬂ
W ot

Cyclotron frequency

Plasma frequency
Direction of magnetization

g =gt o,
Propagation in opposite Wy —Jw W
directions is not the same 1— B p > 0

\ 169 @or W’
¢c b 1_ p O

E=g
0 2 2 2 2
w(w —wc) w —wc

3
00O

Dispersion model describing magnetized neutral plasma
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Propagation in Appleton’s Dispersion Model

Planewave propagation
along magnetization l

W
S p
Fundamental modes kg W (w + wc)
are circularly polarized
waves \ = .
EF =FxjF

Dispersion model describing magnetized neutral plasma
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Radiation

Microscopic Macroscopic
charge velocity current density

8’0(1&) 0 —) 8J(r,t) 0
ot ot

I

zf(E(r,t)xH(r,t)).det 20

Any surface _

circumscribing /

the sources

Only accelerating charges can radiate
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Time-Harmonic Electric Dipole

p(r,w)z()

Elementary source of radiation
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Time-Harmonic Electric Dipole - Field Zones

Static zone

—jkr

1

2 2
kor

A

E (r,w) = Z ¢k’ ©

Amkr

j 1 )
L sin 6
kr k%2 ]

]
27, cosﬁ[kr—l— ]—I—HO [—1—|— P, (w)

Induction zone

Radiation zone

Static, quasi-static and fully dynamic terms all appear in the formula
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Time-Harmonic Electric Dipole - Radiation Zone

Radiated power [W]

= ‘ Arkr
277 1.4
/ A A P = ﬂ p. (w)

2

127
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Time-Harmonic Electric Dipole — General Case

l R=r—7

A —jkR
H(r,w):cok3 Exﬁ 1—|—.1 °
R kR | 47kR
. R (R . Rl Rl 1 i )| e
ET’, =7 ck’|——x|—=x +(3—|p-—|— +
[re) =26k | [R TR R R kR] ATkR

/

/
R:|r—r|

Elementary source of radiation
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General Radiator

time
retardation

/
R:‘r—r‘

Superposition of dipole fields

RADIATION Electromagnetic Field Theory 2

@»
37 | XXX CTU-FEE in Prague, Department of Electromagnetic Field elmag.org




Field in Radiation Zone — General Case FD

_
N\

Farfield has a planewave-like geometry
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Field in Radiation Zone — General Case TD

Farfield has a planewave-like geometry
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Radiation Zone = Rays

A (rw)~ 2 [ (p ) mmay

47 r

V/

4D Fourier(’s) transform

Ik k ke w) = F,,

pod {J(:L', Y, z,t)}

File (-
“ | an

—kr,w

)

e

—Jjkyr

r

Radiation diagram is formed by Fourier('s) transform of sources
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Angular Spectrum Representation (Sources)

4D Fourier(’s) transform

T(k kb w) = F AT (2.9,2)} k= B~k

\ / Im[k] <0
J(kx,kﬁkz,w)

G = et

Valid only outside the

source region l

RADIATION
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Angular Spectrum in Radiation Zone

k. — o0 l Stationary phase method

Farfield is made of propagating planewaves
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Angular Spectrum in Radiation Zone

4D Fourier(’s) transform

T(k bk w) = F AT (2,9,21)}

Farfield is made of propagating planewaves
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Planar Material Boundary ko= K K F

Incident wave Reflected (1 2 1)/ Transmitted (2 > 1) wave

S~ !

H(o < 0)= 7} (B (ko hpw)e ™ o H (ko))

Bl <o)= 7y |7 LRI k) e b XL k)
1 1

H(z>0)= 7} {H] (kb w)e ™ + H, (kb w)e)

o= g BB ) bttt

Boundaryisatz=0 Reflected (2 > 2) / Transmitted (1 > 2) wave Incident wave

Field is composed of incident, reflected and transmitted waves

PLANAR BOUNDARIES
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Planar Material Boundary — Boundary Conditions

kT | H =0 k| Hy =0

\ /

+ - _ + —
z0><I-I1 —|—z0><H1 —z0><H2 —|—z0><I-I2

bt m) sl i

Z, + 7, — _
k k
z, %[k, .k, k| 2)+Z2z <[k, ky,kz2] X H, |
/ : "\
k$,ky are equal on both sides kz _ \/k2 2 g2

PLANAR BOUNDARIES Electromagnetic Field Theory 2
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Perpendicular Incidence — Matrix Form

/ 5= 2ot 1
T, detT" T,
k =k =0 —
! Y Transmission matrix lT} — i det 5 522
(multilayer cascade) 512 _Sn 1
+ l +
E, :[T]E1 | ]:LZ1+Z2 Z -2,
E; E, 27 %, —Z, Z + 7,
— + _
E1+ _ [S] El_ [ S] _ 1 Z, ZZ1 ZZle
E, E, Z,+ 7 | 24, T
/ ~
Scattering matrix ®
(experiments) o
®
Matrices with the use across the electrical engineering
PLANAR BOUNDARIES Electromagnetic Field Theory 2
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Perpendicular Incidence — Interesting Cases

Wavelength inside the slab

Transparent dielectric layer

Bragg‘s mirror
(dielectric mirror)

Alternating dielectric layers

Technically important special cases O
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Oblique Incidence — TM / TE Case

kx:kx
E =0

Snell's law of refraction l

k1 sinco. = k. sin«
inc 2 trans

k1 sina, = k1 sina_,

T~

The angle of incidence equals
to the angle of reflection

Snell's law is a property of k-vectors
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Oblique Incidence — TM Case

|
-

Generalization of reflection and transmission to oblique incidence
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Oblique Incidence — TM Case

Brewster's angle

k & ('uz 1 'u182)

D=0 _ =

- 2 2
/ NS
Vanishing reflection on a boundary \

Simplification for pure dielectrics
1

2

k €
R — 1+_1
k

1 82

Can be used for polarizing unpolarizaed light beams
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Oblique Incidence — TE Case

Generalization of reflection and transmission to oblique incidence

PLANAR BOUNDARIES Electromagnetic Field Theory 2
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Oblique Incidence — TE Case

& T
I
o o <

Brewster's angle

k Fy (82'u1 - 81!“2)

o=0 ) —Z —

b e - i)
/ \

Vanishing reflection on a boundary

Simplification for pure magnetics
1

L 9
WA A
k, ,

Unrealistic scenario for natural materials

PLANAR BOUNDARIES Electromagnetic Field Theory 2
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Oblique Incidence — Total Reflection

k k, n,
£ =
kl kl nl
™ TE
R1—>1 — R1—>1 — 1

Valid for both, the TM and the TE case
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Guided TEM Wave

Wave propagation identical to a planewave

k= —jw,u(a—l—jws)

Geometry of a planewave

Boundary condition
on the conductor
Generalization of a planewave

GUIDED WAVES Electromagnetic Field Theory 2
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Circuit Parameters of the TEM Wave

Enclosing conductor

Between conductors

Per unit length

Velocity of phase
propagation

GUIDED WAVES Electromagnetic Field Theory 2
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The Telegraph Equations

Circuit analog of Maxwell’s equations
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Guided TE and TM Waves

Wave propagation differs
from a planewave

B =k — K

z

TEM mode must be completed with TE and TM modes to form a complete set

GUIDED WAVES Electromagnetic Field Theory 2
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PEC Waveguides — pure TE, TM modes impedances differ

from those of a

planewave
Boundary condition

on the conductor
ZTE/TMHJ_ — ZO % EJ_

nxE=0 A L
k. o+ jwe

I

e Wavenumbers i, > 0 form a discrete set
e Modes are orthogonal in waveguide cross-section

e Modes form a complete set in waveguide cross-section

TEM mode must be completed with TE and TM modes to form a complete set

GUIDED WAVES
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PEC Waveguides — modal orthogonality

|E., -El,ds=Cs5,
S

/'

cross-section of
the waveguide

I(ElaxHiﬂ)-zodS=%jEm .E’ ,dS

S B S

IHM-HiﬂdS=ﬁjEM-EiﬂdS

S a™p S

Waveguide modes form an orthogonal set

GUIDED WAVES Electromagnetic Field Theory 2
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PEC Waveguides — modal decomposition

positive direction

negative direction

Any field within a waveguide can be composed of its modes

GUIDED WAVES Electromagnetic Field Theory 2
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PEC Waveguides — Field Sources

Known field at arbitrary
cross-section of the waveguide

dS

Hiﬂ (rL,w)-IAI(r,w)

fE'iﬂ (rL,w)-Em (rL,w)dS
5

:I:jkzﬂz

e

transversal field of the
waveguide mode

Tangential fields within the cross-section fully define the field everywhere

RADIATION Electromagnetic Field Theory 2
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PEC Waveguides — Field Sources

Full field of the

: Source current density
waveguide mode

existing within the waveguide

Valid to the right (+) or to the
left (-) of the source region

transversal field of the
waveguide mode

This is how waveguide modes are excited

RADIATION Electromagnetic Field Theory 2
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Dielectric Waveguides — mixed TE + TM modes

Boundary condition
on dielectric interface

nxlEl—E2]:0

nxlﬂl—ﬂz]:()

'

e Finite number of guided modes
e Continuum of radiating modes

e Only combination of guided and radiating modes forms a complete
set in the waveguide cross-section

General field is not guided by a dielectric waveguide

GUIDED WAVES Electromagnetic Field Theory 2
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Cavity Resonators

Boundary condition

Master equation
g on the conductor

AE +—epukE =0 nxE =0

n n

Nontival souton only / l \ Notice that field value is

exists in a lossless cavity defined on a closed surface

e Eigenfrequencies w > 0 form a discrete set
e Modes are orthogonal in the volume of the cavity

e Modes form a complete set in the volume of the cavity

Field in a lossless cavity forms an exception to the uniqueness theorem

GUIDED WAVES Electromagnetic Field Theory 2
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Closed Waveguide as a Cavity Resonator

Dispersion relation

Electric and magnetic fields
are 90° out of phase

Waveguide modes already solve the wave equation

GUIDED WAVES Electromagnetic Field Theory 2
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Excitation of a PEC Cavity

Modes of lossless cavity
Vector potential is expanded

into cavity modes AA ('r) + )\iAa ('r) =0

A(r,w) = za:C'a (W)Aa (7“) n(r) xE (r) =0

Modes of a lossless cavity are used as a basis

RADIATION Electromagnetic Field Theory 2
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Computational Electromagnetics (CEM)

Operator Function approximation
modification/approximation

(etc. MoM, FEM, BEM)
with known inversion
(etc. FD) \

Typical real-life problems cannot be solved with pen and paper.

RADIATION Electromagnetic Field Theory 2
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Finite Differences in Frequency Domain

Approximating derivatives with differences: , flz +Az)— flz — Az
; fle+Ax)—2flz)+ flz — Ax
f"(e) = [+ 22) (Ai)f 2=ta)

Discretization X,¥,2 — %, ],k
Differential equations =———————————  System of linear equations

AE +EE =0

Common method to find waveguide or resonator modes.

RADIATION Electromagnetic Field Theory 2
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Finite Differences in Time Domain

Additional time discretization: ¢ — ¢
Schemes

Imblicit: /\ Exolicit:

Computes full matrices for discretization in time and  Treats time as an evolution variable.
space.

System of linear equations: Matrix multiplication:
q' _ q q q' _ q q
Gongngn = Zaz‘,j,kfz‘,j,k Gongngn = Z U
i,7,k,q i,7,k,q<q'

+ Boundary and initial conditions

2
AE—,uJa—E—,usaEz

0
Ot ot’

Versatile method that can even handle non-lineatrities.

RADIATION Electromagnetic Field Theory 2
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Finite Element Method

Galerkin method applied to a differential equation.

F:Zav,b

Zan <¢m7 L(¢n )> = <¢m,G> Expansion Coefflc|ents/ \

" Basis functions (satisfy boundary conditions)

Testing within scalar product

AE +EE =0

Powerful method to solve bounded problems described by a differential equation.
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Method of Moments

Galerkin method applied to an integral equation.

F:Zcm,b

Zan <¢m7 L(¢n )> = <¢m,G> Expansion Coefflc|ents/ \

" Basis functions (satisfy boundary conditions)

Testing within scalar product

—Jjk, "r r‘

]—|r_r|dv

J J(r):—jw“o —vv ﬂ

WE, X 41

Method for unbounded problems, which discretizes only current supporting regions.
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